#ifndef __CORRELATOR_H
#define __CORRELATOR_H
#include "KVReconEventSelector.h"
#include "KVEventMixerN.h"
#include "KVEventClassifier.h"
struct particle {
int z, a, det_index;
TVector3 momentum;
particle() = default;
particle(particle&&) = default;
particle(const particle&) = default;
{}
};
TString get_cor_histo_name(int bin, const TString& quantity)
{
return Form("h_cor_%s_bin_%d", quantity.Data(), bin);
}
TString get_uncor_histo_name(int bin, const TString& quantity)
{
return Form("h_uncor_%s_bin_%d", quantity.Data(), bin);
}
int nevent = 0;
public:
ExampleAnalysis_KVEventMixerN_3Body() {}
ClassDef(ExampleAnalysis_KVEventMixerN_3Body, 0)
};
#endif
virtual Int_t GetIndex() const
Simple class for sorting events according to global variables.
Generic event mixing algorithm for N-particle correlation studies.
virtual void InitAnalysis()
virtual Bool_t Analysis()
virtual void EndAnalysis()
Int_t GetZ() const
Return the number of proton / atomic number.
TVector3 GetMomentum() const
Base class for user analysis of reconstructed data.
Nuclei reconstructed from data measured by a detector array .
KVDetector * GetStoppingDetector() const
void SetDetector(int i, KVDetector *);
#include "ExampleAnalysis_KVEventMixerN_3Body.h"
ClassImp(ExampleAnalysis_KVEventMixerN_3Body)
void ExampleAnalysis_KVEventMixerN_3Body::InitAnalysis(void)
{
auto gv = AddGV("KVMult", "m_proton");
gv->SetSelection({
"proton", [](
const KVNucleus * _n)
{
}});
gv->SetEventSelection([](
const KVVarGlob * vg) {
});
gv = AddGV("KVMult", "m_deuton");
gv->SetSelection({
"deuton", [](
const KVNucleus * _n)
{
}});
gv->SetEventSelection([](
const KVVarGlob * vg) {
});
gv = AddGV("KVMult", "m_alpha");
gv->SetSelection({
"alpha", [](
const KVNucleus * _n)
{
}});
gv->SetEventSelection([](
const KVVarGlob * vg) {
});
AddGV("KVMult", "mtot");
mult_bin = GetGVList()->AddEventClassifier("mtot");
std::vector<Double_t> mult_slices = {8.4195047, 14.449584, 21.173604, 28.044737};
for (auto cut : mult_slices) mult_bin->AddCut(cut);
for (size_t i = 0; i <= mult_slices.size(); ++i) {
AddHisto<TH1F>(get_cor_histo_name(i, "Ex"), Form("Correlated spectrum E* bin %ld", i), 500, 0., 100.);
AddHisto<TH1F>(get_uncor_histo_name(i, "Ex"), Form("Uncorrelated spectrum E* bin %ld", i), 500, 0., 100.);
}
auto t = AddTree("check_tree", "check event classifier");
GetGVList()->MakeBranches(t);
SetJobOutputFileName("ExampleAnalysis_KVEventMixerN_3Body_results.root");
}
void ExampleAnalysis_KVEventMixerN_3Body::InitRun(void)
{
SetTriggerConditionsForRun(GetCurrentRun()->GetNumber());
}
Bool_t ExampleAnalysis_KVEventMixerN_3Body::Analysis(void)
{
auto bin = mult_bin->GetEventClassification();
GetGVList()->FillBranches();
FillTree();
event_mixer.ProcessEvent(bin,
for (auto& n : parts) {
BE += n;
}
},
BE += part;
for (auto& n : other_parts) {
}
},
"proton",
{
return n->IsOK() && n->IsAMeasured() && n->IsIsotope(1, 1);
}
}),
"deuton",
{
return n->IsOK() && n->IsAMeasured() && n->IsIsotope(1, 2);
}
}),
"alpha",
{
return n->IsOK() && n->IsAMeasured() && n->IsIsotope(2, 4);
}
})
);
return kTRUE;
}
Description of properties and kinematics of atomic nuclei.
Double_t GetExcitEnergy() const
Bool_t IsIsotope(Int_t Z, Int_t A) const
virtual Bool_t IsAMeasured() const
Vector of references to objects.
Base class for all global variable implementations.
Double_t GetValue(void) const
Wrapper class for iterating over nuclei in KVReconstructedEvent accessed through base pointer or refe...