KaliVeda
Toolkit for HIC analysis
KVHistoManipulator.cpp
1 //Created by KVClassFactory on Thu Oct 18 11:48:18 2007
2 //Author: Eric Bonnet
3 
4 #include "KVHistoManipulator.h"
5 #include "Riostream.h"
6 #include "TProfile.h"
7 #include "TList.h"
8 #include "TString.h"
9 #include "TClass.h"
10 #include "TGraph.h"
11 #include "TROOT.h"
12 #include "TMethodCall.h"
13 #include "TMath.h"
14 #include "TRandom.h"
15 #include "KVNumberList.h"
16 #include "TSpline.h"
17 #include "TStyle.h"
18 #include "TCanvas.h"
19 #include "TMultiGraph.h"
20 
21 #include <TObjString.h>
22 
23 using namespace std;
24 
26 
27 KVHistoManipulator* gHistoManipulator;
28 
29 
32 
34 {
35  //Default constructor
36  init();
37  gHistoManipulator = this;
38  fVDCanvas = nullptr;
39 }
40 
41 
42 
43 
45 
47 {
48  if (gHistoManipulator == this)
49  gHistoManipulator = nullptr;
50 }
51 
52 
53 //###############################################################################################################"
54 //-------------------------------------------------
55 
68 
70 {
71 //-------------------------------------------------
72  // IMPORTANT l'histo est modifie
73  //
74  // Efface les bins dont la statistique est hors de l 'intervalle ]stat_min,stat_max[
75  // l'erreur et le contenu sont mis a zero
76  // le nombre d entree (GetEntries) reste inchange
77  // pour les TH1 cela correspond a GetBinContent(xx)
78  // pour les TH2 cela correspond a GetBinContent(xx,yy) --> cellules
79  // pour les TProfile cela correspond a GetBinEntries(xx)
80  // la fonction renvoie le nbre de bins ou cellules mis a zero
81  // si stat_min ou stat_max sont egales à -1 la borne associée n'est pas prise en compte
82  if (!hh) {
83  cout << "pointeur histogramme nul" << endl;
84  return -1;
85  }
86  Int_t nb_raz = 0;
87  Bool_t raz = kFALSE;
88  if (hh->InheritsFrom("TH2")) {
89 
90  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) {
91  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1) {
92  raz = kFALSE;
93  if (stat_min != -1 && hh->GetBinContent(nx, ny) < stat_min) raz = kTRUE;
94  if (stat_max != -1 && hh->GetBinContent(nx, ny) > stat_max) raz = kTRUE;
95  if (raz) {
96  hh->SetBinContent(nx, ny, 0);
97  hh->SetBinError(nx, ny, 0);
98  nb_raz += 1;
99  }
100  }
101  }
102  }
103  else if (hh->InheritsFrom("TProfile")) {
104  TProfile* prof = (TProfile*)hh;
105  for (Int_t nx = 1; nx <= prof->GetNbinsX(); nx += 1) {
106  raz = kFALSE;
107  if (stat_min != -1 && prof->GetBinEntries(nx) < stat_min) raz = kTRUE;
108  if (stat_max != -1 && prof->GetBinEntries(nx) > stat_max) raz = kTRUE;
109  if (raz) {
110  prof->SetBinContent(nx, 0);
111  prof->SetBinEntries(nx, 0);
112  prof->SetBinError(nx, 0);
113  nb_raz += 1;
114  }
115  }
116  }
117  else if (hh->InheritsFrom("TH1")) {
118  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) {
119  raz = kFALSE;
120  if (stat_min != -1 && hh->GetBinContent(nx) < stat_min) raz = kTRUE;
121  if (stat_max != -1 && hh->GetBinContent(nx) > stat_max) raz = kTRUE;
122  if (raz) {
123  hh->SetBinContent(nx, 0);
124  hh->SetBinError(nx, 0);
125  nb_raz += 1;
126  }
127  }
128  }
129 
130  return nb_raz;
131 }
132 
133 
134 //###############################################################################################################"
135 //-------------------------------------------------
136 
146 
148 {
149 //-------------------------------------------------
150  // IMPORTANT l'histo est modifie
151  //
152  // Applique une selection sur un histo 2D a partir d'un TCutG;
153  // Si mode=In seules les cellules comprises dans le TCutG sont gardes
154  // mode=Out --> Inverse
155  // la fonction renvoie le nbre de cellules mis a zero
156  // Attention le test ne se fait que sur les valeurs centrales des cellules (GetBinCenter())
157 
158  if (!hh) {
159  cout << "pointeur histogramme nul" << endl;
160  return -1;
161  }
162  Int_t nb_raz = 0;
163  Bool_t raz = kFALSE;
164 
165  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) {
166  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1) {
167  raz = kFALSE;
168  Double_t valx = hh->GetXaxis()->GetBinCenter(nx);
169  Double_t valy = hh->GetYaxis()->GetBinCenter(ny);
170  if (mode == "in" && !cut->IsInside(valx, valy)) raz = kTRUE;
171  if (mode == "out" && cut->IsInside(valx, valy)) raz = kTRUE;
172  if (raz) {
173  hh->SetBinContent(nx, ny, 0);
174  hh->SetBinError(nx, ny, 0);
175  nb_raz += 1;
176  }
177  }
178  }
179 
180  return nb_raz;
181 }
182 
183 
184 //###############################################################################################################
185 //-------------------------------------------------
186 
212 
213 TH1* KVHistoManipulator::ScaleHisto(TH1* hh, TF1* fx, TF1* fy, Int_t nx, Int_t ny, Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Option_t* norm)
214 {
215 //-------------------------------------------------
216  // Applique les transformations correspondantes aux fonctions (TF1 *) donnees en argument
217  // et donne en sortie l histogramme transforme celui ci a pour nom "nom_de_histo_input"_scaled
218  //
219  // IMPORTANT l'histo d'entree n'est pas modifie
220  //
221  // pour TH1 et TProfile n'est pris en compte que TF1 *fx;
222  // les parametres de la fonction doivent etre initialises avant.
223  // Si la fonction est un pointeur NULL, aucune transformation n est appliquee et l axe reste tel quel.
224  // L'intervalle de validite des fonctions TF1::SetRange est determine a partir des limites de l histo apres transformations
225  // nx xmin et xmax sont les parametres de binnage des histo
226  // si nx=-1, ceux ci sont recalcules automatiquement nx = nx_initial, xmin = fx(xmin), xmax = fx(xmax)
227  // si nx!=-1, xmin et xmax doivent etre aussi specifies
228  // il en est de meme pour l'axe y
229  //
230  // OPTION: norm
231  // norm = "" (default) : no adjustment is made for the change in bin width due to the transformation
232  // norm = "width" : bin contents are adjusted for width change, so that the integral of the histogram
233  // contents taking into account the bin width (i.e. TH1::Integral("width")) is the same.
234  //
235  // NOTE for 1D histos:
236  // If the binning of the scaled histogram is imposed by the user (nx!=-1), then in order
237  // to achieve a continuous scaled distribution we have to randomize X within each bin.
238  // This will only work if the bin contents of 'hh' are integer numbers, i.e. unnormalised raw data histogram.
239 
240  Bool_t width = !strcmp(norm, "width");
241  TH1* gg = nullptr;
242  Double_t abs;
243  Bool_t fixed_bins = (nx != -1);
244  if (fx) {
245  if (nx == -1) {
246  nx = hh->GetNbinsX();
247  abs = hh->GetXaxis()->GetBinLowEdge(1);
248  xmin = fx->Eval(abs);
249  abs = hh->GetXaxis()->GetBinUpEdge(hh->GetNbinsX());
250  xmax = fx->Eval(abs);
251  }
252  fx->SetRange(hh->GetXaxis()->GetBinLowEdge(1), hh->GetXaxis()->GetBinUpEdge(nx));
253  fx->SetNpx(nx + 1);
254  }
255  else {
256  nx = hh->GetNbinsX();
257  xmin = hh->GetXaxis()->GetBinLowEdge(1);
258  xmax = hh->GetXaxis()->GetBinUpEdge(hh->GetNbinsX());
259  }
260 
261  if (hh->InheritsFrom("TH2")) {
262  if (fy) {
263  if (ny == -1) {
264  ny = hh->GetNbinsY();
265  abs = hh->GetYaxis()->GetBinLowEdge(1);
266  ymin = fy->Eval(abs);
267  abs = hh->GetYaxis()->GetBinUpEdge(hh->GetNbinsY());
268  ymax = fy->Eval(abs);
269  }
270  fy->SetRange(hh->GetYaxis()->GetBinLowEdge(1), hh->GetYaxis()->GetBinUpEdge(ny));
271  fy->SetNpx(ny + 1);
272  }
273  else {
274  ny = hh->GetNbinsY();
275  ymin = hh->GetYaxis()->GetBinLowEdge(1);
276  ymax = hh->GetYaxis()->GetBinUpEdge(hh->GetNbinsY());
277  }
278  }
279 
280  TClass* clas = TClass::GetClass(hh->ClassName());
281  gg = (TH1*) clas->New();
282  if (!gg) return nullptr;
283  TString hname;
284  hname.Form("%s_scaled", hh->GetName());
285  gg->SetNameTitle(hname.Data(), hh->GetTitle());
286 
287  if (hh->InheritsFrom("TH2")) gg->SetBins(nx, xmin, xmax, ny, ymin, ymax);
288  else gg->SetBins(nx, xmin, xmax);
289 
290  // if option norm="width', take account of change of X bin width between original and scaled histograms
291  Double_t Xbin_width_corr = 1.0, Ybin_width_corr = 1.0;
292  if (width) {
293  Double_t orig_Xbin_width = (hh->GetXaxis()->GetXmax() - hh->GetXaxis()->GetXmin()) / hh->GetNbinsX();
294  Double_t new_Xbin_width = (gg->GetXaxis()->GetXmax() - gg->GetXaxis()->GetXmin()) / gg->GetNbinsX();
295  Xbin_width_corr = orig_Xbin_width / new_Xbin_width;
296  if (hh->InheritsFrom("TH2")) {
297  // Take account of change of X bin width between original and scaled histograms
298  Double_t orig_Ybin_width = (hh->GetYaxis()->GetXmax() - hh->GetYaxis()->GetXmin()) / hh->GetNbinsY();
299  Double_t new_Ybin_width = (gg->GetYaxis()->GetXmax() - gg->GetYaxis()->GetXmin()) / gg->GetNbinsY();
300  Ybin_width_corr = orig_Ybin_width / new_Ybin_width;
301  }
302  }
303 
304  for (Int_t xx = 1; xx <= hh->GetNbinsX(); xx += 1) {
305  Double_t bmin = hh->GetXaxis()->GetBinLowEdge(xx);
306  Double_t bmax = hh->GetXaxis()->GetBinUpEdge(xx);
307  abs = gRandom->Uniform(bmin, bmax);
308  if (abs == bmax) abs = bmin;
309  Double_t resx = abs;
310  if (fx) resx = fx->Eval(abs);
311  if (hh->InheritsFrom("TH2")) {
312  for (Int_t yy = 1; yy <= hh->GetNbinsY(); yy += 1) {
313  if (hh->GetBinContent(xx, yy) > 0) {
314  bmin = hh->GetYaxis()->GetBinLowEdge(yy);
315  bmax = hh->GetYaxis()->GetBinUpEdge(yy);
316  abs = gRandom->Uniform(bmin, bmax);
317  if (abs == bmax) abs = bmin;
318  Double_t resy = abs;
319  if (fy) resy = fy->Eval(abs);
320  gg->SetBinContent(gg->GetXaxis()->FindBin(resx),
321  gg->GetYaxis()->FindBin(resy),
322  hh->GetBinContent(xx, yy)*Xbin_width_corr * Ybin_width_corr);
323  //gg->SetBinError(gg->GetXaxis()->FindBin(resx),gg->GetYaxis()->FindBin(resy),hh->GetBinError(xx,yy));
324  }
325  }
326  }
327  else {
328  // 1-D histogram
329  if (fixed_bins) {
330  // histogram binning imposed by user. we need to randomise inside bins of original histogram
331  // otherwise scaled histogram will be discontinuously filled.
332  Int_t nmax = (Int_t)hh->GetBinContent(xx);
333  for (int i = 0; i < nmax; i++) {
334  abs = gRandom->Uniform(bmin, bmax);
335  Double_t resx = fx->Eval(abs);
336  gg->Fill(resx, Xbin_width_corr);
337  //cout << resx << " " << Xbin_width_corr << endl;
338  }
339  }
340  else {
341  // range and binning calculated from function.
342  Double_t resy = hh->GetBinContent(xx);
343  if (fy) resy = fy->Eval(resy);
344  gg->SetBinContent(gg->GetXaxis()->FindBin(resx), resy * Xbin_width_corr);
345  }
346  }
347  }
348  return gg;
349 }
350 
351 
352 
359 
360 TGraph* KVHistoManipulator::ScaleGraph(const TGraph* hh, const TString& axis, const TF1& f1, const TF1& f2) const
361 {
362  // Returns pointer to new graph whose X- and/or Y-coordinates are those of the input graph scaled according to the given function(s).
363  //
364  // * If axis="X", f1 is applied to X-coordinates
365  // * If axis="Y", f1 is applied to Y-coordinates
366  // * If axis="XY", f1 is applied to X-coordinates and f2 is applied to Y-coordinates
367 
368  TGraph* gg = nullptr;
369  TClass* clas = TClass::GetClass(hh->ClassName());
370  gg = (TGraph*) clas->New();
371  if (!gg) return nullptr;
372  TString hname;
373  hname.Form("%s_scaled", hh->GetName());
374  gg->SetNameTitle(hname.Data(), hh->GetTitle());
375 
376  bool scale_X = axis.Contains("X");
377  const TF1* FX = &f1;
378  bool scale_Y = axis.Contains("Y");
379  const TF1* FY = &f2;
380  if (axis == "Y") FY = &f1;
381 
382  Int_t np = hh->GetN();
383  for (Int_t nn = 0; nn < np; nn += 1) {
384  Double_t xx1, yy1;
385  hh->GetPoint(nn, xx1, yy1);
386  Double_t xx2 = xx1;
387  if (scale_X) xx2 = FX->Eval(xx1);
388  Double_t yy2 = yy1;
389  if (scale_Y) yy2 = FY->Eval(yy1);
390  gg->SetPoint(nn, xx2, yy2);
391  if (gg->InheritsFrom("TGraphErrors")) {
392  // transformation of errors
393  // if f = f(x) the error on f, e_f, for a given error on x, e_x, is
394  // e_f = abs0(df/dx) * e_x
395  Double_t e_x = ((TGraphErrors*)hh)->GetErrorX(nn);
396  Double_t e_y = ((TGraphErrors*)hh)->GetErrorY(nn);
397  if (scale_X) e_x = TMath::Abs(FX->Derivative(xx1)) * e_x;
398  if (scale_Y) e_y = TMath::Abs(FY->Derivative(yy1)) * e_y;
399  ((TGraphErrors*)gg)->SetPointError(nn, e_x, e_y);
400  }
401  }
402 
403  return gg;
404 }
405 
406 //###############################################################################################################
407 //-------------------------------------------------
408 
413 
415 {
416 //-------------------------------------------------
417  //Exemple d utilisation de la methode KVHistoManipulator::ScaleHisto avec ici
418  //L'obtention des distributions centrees reduites
419 
420  if (!hh) {
421  cout << "pointeur histogramme nul" << endl;
422  return hh;
423  }
424 
425  TString expression;
426  expression.Form("(x-%lf)/%lf", hh->GetMean(1), hh->GetRMS(1));
427  TF1 fx("fx", expression.Data());
428  unique_ptr<TF1> fy;
429  if (hh->InheritsFrom("TH2")) {
430  expression.Form("(x-%lf)/%lf", hh->GetMean(2), hh->GetRMS(2));
431  fy.reset(new TF1("fy", expression.Data()));
432  }
433 
434  TH1* gg = ScaleHisto(hh, &fx, fy.get(), nx, ny, xmin, xmax, ymin, ymax);
435  TString hname;
436  hname.Form("%s_centred", hh->GetName());
437  gg->SetName(hname.Data());
438 
439  return gg;
440 }
441 
442 //###############################################################################################################
443 //-------------------------------------------------
444 
449 
451 {
452 //-------------------------------------------------
453  //Exemple d utilisation de la methode KVHistoManipulator::ScaleHisto avec ici
454  //L'obtention des distributions centrees reduites
455 
456  if (!hh) {
457  cout << "pointeur histogramme nul" << endl;
458  return hh;
459  }
460 
461  TString expression;
462  expression.Form("(x-%lf)/%lf", hh->GetMean(1), hh->GetRMS(1));
463  TF1 fx("fx", expression.Data());
464  TH2* gg = (TH2*)ScaleHisto(hh, &fx, nullptr, nx, -1, xmin, xmax, -1., -1.);
465  TString hname;
466  hname.Form("%s_centred_X", hh->GetName());
467  gg->SetName(hname.Data());
468 
469  return gg;
470 }
471 
472 //###############################################################################################################
473 //-------------------------------------------------
474 
479 
481 {
482 //-------------------------------------------------
483  //Exemple d utilisation de la methode KVHistoManipulator::ScaleHisto avec ici
484  //L'obtention des distributions centrees reduites
485 
486  if (!hh) {
487  cout << "pointeur histogramme nul" << endl;
488  return hh;
489  }
490 
491  TString expression;
492  expression.Form("(x-%lf)/%lf", hh->GetMean(1), hh->GetRMS(1));
493  TF1 fy("fy", expression.Data());
494  TH2* gg = (TH2*)ScaleHisto(hh, nullptr, &fy, -1, ny, -1., -1., ymin, ymax);
495  TString hname;
496  hname.Form("%s_centred_Y", hh->GetName());
497  gg->SetName(hname.Data());
498 
499  return gg;
500 }
501 
502 
503 //###############################################################################################################
504 //-------------------------------------------------
505 
520 
522 {
523 //-------------------------------------------------
524  // Renormalisation de l histogramme 2D sous la contrainte d'une ditribution plate suivant X ou Y
525  // (signal de bimodalite par exemple)
526  // et donne en sortie l histogramme transforme celui ci a pour nom "nom_de_histo_input"_normalised
527  //
528  // IMPORTANT l'histo d'entree n'est pas modifie
529  //
530  // bmin, bmax : intervalle de bins ou l'on effectue la renormalisation (par defaut -1,-1 --> toute la plage)
531  // les contenus hors de l intervalle [bmin,bmax] sont remis a zero
532  // Si on veut une distribution plate en X ils indiquent l'intervalle sur cet axe x
533  // valref : valeur en stat de la distribution plate (par defaut 1)
534  //
535  // ATTENTION la propagation des erreurs n est pas (pour l instant) implementee
536 
537  if (!hh) {
538  cout << "pointeur histogramme nul" << endl;
539  return hh;
540  }
541 
542  if (bmin == -1) bmin = 1;
543  TString hname;
544  hname.Form("%s_normalised", hh->GetName());
545  TH2* clone = 0;
546  if ((clone = (TH2*)gDirectory->Get(hname.Data()))) delete clone;
547  clone = (TH2*)hh->Clone(hname.Data());
548  clone->Reset();
549 
550  if (axis == "X") {
551  if (bmax == -1) {
552  bmax = hh->GetNbinsX();
553  }
554  for (Int_t nx = bmin; nx <= bmax; nx += 1) {
555  Double_t integ = 0;
556  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1) integ += hh->GetBinContent(nx, ny);
557  if (integ > 0) {
558  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1) {
559  clone->SetBinContent(nx, ny, hh->GetBinContent(nx, ny)*valref / integ);
560  if (hh->GetBinContent(nx, ny) > 0) {
561  Double_t erreur = clone->GetBinContent(nx, ny) * TMath::Sqrt(1. / hh->GetBinContent(nx, ny) + 1. / integ);
562  clone->SetBinError(nx, ny, erreur);
563  }
564  }
565  }
566  }
567  }
568  else if (axis == "Y") {
569  if (bmax == -1) {
570  bmax = hh->GetNbinsY();
571  }
572  for (Int_t ny = bmin; ny <= bmax; ny += 1) {
573  Double_t integ = 0;
574  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) integ += hh->GetBinContent(nx, ny);
575  if (integ > 0) {
576  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) {
577  clone->SetBinContent(nx, ny, hh->GetBinContent(nx, ny)*valref / integ);
578  Double_t erreur = clone->GetBinContent(nx, ny) * TMath::Sqrt(1. / hh->GetBinContent(nx, ny) + 1. / integ);
579  clone->SetBinError(nx, ny, erreur);
580  }
581  }
582  }
583  }
584  else {
585  cout << "l option TString axis doit etre X ou Y" << endl;
586  }
587  return clone;
588 }
589 
590 //###############################################################################################################
591 //-------------------------------------------------
592 
598 
600 {
601 //-------------------------------------------------
602  // Les bornes valmin, valmax definissent l'intervalle ou l on effectue la renormalisation
603  // On en derive les valeurs de bins
604  // pour la methode KVHistoManipulator::RenormaliseHisto(TH1 *hh,TString axis,Double_t valref,Int_t bmin,Int_t bmax)
605 
606  if (!hh) {
607  cout << "pointeur histogramme nul" << endl;
608  return hh;
609  }
610  if (axis == "X") return RenormaliseHisto(hh, hh->GetXaxis()->FindBin(valmin), hh->GetXaxis()->FindBin(valmax), axis, valref);
611  else if (axis == "Y") return RenormaliseHisto(hh, hh->GetYaxis()->FindBin(valmin), hh->GetYaxis()->FindBin(valmax), axis, valref);
612  else {
613  cout << "l option TString axis doit etre X ou Y" << endl;
614  return nullptr;
615  }
616 
617 }
618 
619 
620 //###############################################################################################################
621 //-------------------------------------------------
622 
640 
642 {
643 //-------------------------------------------------
644  // Cumule le contenu de l histo hh entre bin bmin et bmax et retourne l histo correspondant
645  // Si direction="C" (default):
646  // SetBinContent(n) = GetBinContent(bmin)+GetBinContent(bmin+1)+ ... + GetBinContent(n)
647  // Si direction="D":
648  // SetBinContent(n) = GetBinContent(bmax)+GetBinContent(bmax-1)+ ... + GetBinContent(n)
649  //
650  // Donne en sortie l histogramme transforme celui ci a pour nom "nom_de_histo_input"_cumulated
651  //
652  // IMPORTANT l'histo d'entree n'est pas modifie
653  //
654  // si bmin=-1, bmin=1
655  // si bmax=-1, bmax=GetNbinsX()
656  //
657  // Avec norm = "surf" (default) l'integral de l histo cumule est egale a 1
658  // Avec norm = "max" le contenu de l'histogram est renormalise de facon a ce que le maximum soit 1
659 
660  if (!hh) {
661  cout << "pointeur histogramme nul" << endl;
662  return hh;
663  }
664  direction.ToUpper();
665  if (direction != "C" && direction != "D") {
666  cout << "l option TString direction doit etre C ou D" << endl;
667  return nullptr;
668  }
669  if (hh->GetDimension() == 1) {
670  if (bmin < 1) bmin = 1;
671  if (bmax < 1) bmax = hh->GetNbinsX();
672  TString hname;
673  hname.Form("%s_cumulated", hh->GetName());
674  TH1* clone = (TH1*)hh->Clone(hname.Data());
675  clone->Reset();
676  Double_t sum = 0;
677  Double_t big_sum = 0;
678  if (direction == "C") {
679  /* "standard" cumulative histogram, from bin 'bmin' to bin 'bmax' */
680  for (Int_t nx = 1; nx <= hh->GetNbinsX(); ++nx) {
681  if (nx < bmin) clone->SetBinContent(nx, 0);
682  else if (nx > bmax) clone->SetBinContent(nx, sum);
683  else {
684  sum += hh->GetBinContent(nx);
685  clone->SetBinContent(nx, sum);
686  }
687  big_sum += sum;
688  }
689  }
690  else {
691  /* "reverse" cumulative histogram, from bin 'bmax' to bin 'bmin' */
692  for (Int_t nx = hh->GetNbinsX(); nx >= 1; --nx) {
693  if (nx > bmax) clone->SetBinContent(nx, 0);
694  else if (nx < bmin) clone->SetBinContent(nx, sum);
695  else {
696  sum += hh->GetBinContent(nx);
697  clone->SetBinContent(nx, sum);
698  }
699  big_sum += sum;
700  }
701  }
702  // normalisation
703  if (!strcmp(norm, "surf")) {
704  clone->Scale(1. / big_sum);
705  }
706  else if (!strcmp(norm, "max")) {
707  clone->Scale(1. / sum);
708  }
709  return clone;
710  }
711  else {
712  cout << "cette methode n est pas prevue pour les TH2, TH3" << endl;
713  return nullptr;
714  }
715 
716 }
717 
718 
719 //###############################################################################################################
720 //-------------------------------------------------
721 
734 
736 {
737 //-------------------------------------------------
738  // retourne la derivee d ordre 0, 1 ou 2 d'un histogramme
739  // 0 -> correspond a un lissage (smooth) de la distribution
740  // 1 et 2 correspondent aux derivees premieres et deuxiemes
741  //
742  // 0 -> derivee zero Yi = 1/35*(-3yi-2 + 12yi-1 +17yi +12yi1 -3yi2)
743  // 1 -> derivee premiere Y'i = 1/12h*(yi-2 - 8yi-1 +8yi1 -1yi2)
744  // 2 -> derivee seconde Y''i = 1/7h/h*(2yi-2 -1 yi-1 -2yi -1yi1 +2yi2)
745  // les derivees pour les bins 1,2 et n-1,n ne sont pas calculees
746  //
747  // IMPORTANT l'histo d'entree n'est pas modifie
748 
749  if (!hh) {
750  cout << "pointeur histogramme nul" << endl;
751  return hh;
752  }
753  if (!(0 <= order && order <= 2)) {
754  cout << "ordre " << order << "n est pas implemente" << endl;
755  return nullptr;
756  }
757  if (hh->GetDimension() == 1) {
758 
759  TString hname;
760  hname.Form("%s_derivated_%d", hh->GetName(), order);
761  TH1* clone = 0;
762 
763  if (hh->InheritsFrom("TProfile")) clone = new TH1F(hname.Data(), hh->GetTitle(), hh->GetNbinsX(), hh->GetBinLowEdge(1), hh->GetBinLowEdge(hh->GetNbinsX() + 1));
764  else clone = (TH1*)hh->Clone(hname.Data());
765 
766  clone->Reset();
767 
768  for (Int_t nx = 3; nx <= hh->GetNbinsX() - 2; nx += 1) {
769  Double_t dev = 0;
770  if (order == 0) {
771  dev = 1. / 35.*(
772  -3 * hh->GetBinContent(nx - 2)
773  + 12 * hh->GetBinContent(nx - 1)
774  + 17 * hh->GetBinContent(nx)
775  + 12 * hh->GetBinContent(nx + 1)
776  - 3 * hh->GetBinContent(nx + 2)
777  );
778  }
779  else if (order == 1) {
780  Double_t h = hh->GetBinWidth(1);
781  dev = 1 / 12. / h * (
782  1 * hh->GetBinContent(nx - 2)
783  - 8 * hh->GetBinContent(nx - 1)
784  + 0 * hh->GetBinContent(nx)
785  + 8 * hh->GetBinContent(nx + 1)
786  - 1 * hh->GetBinContent(nx + 2)
787  );
788  }
789  else {
790  Double_t h2 = pow(hh->GetBinWidth(1), 2.);
791  dev = 1 / 7. / h2 * (
792  2 * hh->GetBinContent(nx - 2)
793  - 1 * hh->GetBinContent(nx - 1)
794  - 2 * hh->GetBinContent(nx)
795  - 1 * hh->GetBinContent(nx + 1)
796  + 2 * hh->GetBinContent(nx + 2)
797  );
798  }
799  clone->SetBinContent(nx, dev);
800  }
801  return clone;
802  }
803  else {
804  cout << "cette methode n est pas prevue pour les TH2, TH3" << endl;
805  return nullptr;
806  }
807 
808 }
809 
810 
811 //###############################################################################################################
812 //-------------------------------------------------
813 
830 
832 {
833 //-------------------------------------------------
834  // Renvoie un TGraph
835  // A partir d'un 2D histo, permet de tracer l'evolution d'un moment en fonction d'un autre moment
836  // ou d'un moment d'un axe en fonction de l'aure axe.
837  // Les TString momentx et momenty doivent etre des "Get like" methodes connues de TH1
838  // comme GetMean, GetRMS ou GetKurtosis :
839  // - Si momenty="" -> on obtient l'evolution du moment momentx en fonction de
840  // la variable associée a l'autre axe.
841  // - Si momenty!="" -> on obtient l'evolution du moment momenty en fonction du momentx
842  //
843  // Si TString axis = X la variable en X est le parametre d echantillonage et vice-versa
844  //
845  // Exemple :
846  // GetMomentEvolution(histo,"GetMean","GetSkewness","X") -> Evolution de la skewness en fonction de la moyenne de l'observable
847  // en Y par tranche de l'observable X
848 
849  if (axis != "X" && axis != "Y") {
850  cout << "GetMomentEvolution(TH2*,TString ,TString ,TString) Mauvaise syntaxe pour TString axis (X ou Y) " << endl;
851  return nullptr;
852  }
853  TMethodCall cmx;
854  cmx.InitWithPrototype(TClass::GetClass("TH1D"), Form("%s", momentx.Data()), "int");
855  if (!cmx.IsValid()) {
856  cout << "GetMomentEvolution(TH2*,TString ,TString ,TString) TString momentx n'est pas une methode valide " << momentx.Data() << endl;
857  return nullptr;
858  }
859  unique_ptr<TMethodCall> Ecmx(new TMethodCall());
860  Ecmx->InitWithPrototype(TClass::GetClass("TH1D"), Form("%sError", momentx.Data()), "int");
861 
862  unique_ptr<TMethodCall> cmy, Ecmy;
863  if (momenty != "") {
864  cmy.reset(new TMethodCall());
865  cmy->InitWithPrototype(TClass::GetClass("TH1D"), Form("%s", momenty.Data()), "int");
866  if (!cmy->IsValid()) {
867  cout << "GetMomentEvolution(TH2*,TString ,TString ,TString) TString momenty n'est pas une methode valide " << momenty.Data() << endl;
868  return nullptr;
869  }
870  Ecmy.reset(new TMethodCall());
871  Ecmy->InitWithPrototype(TClass::GetClass("TH1D"), Form("%sError", momenty.Data()), "int");
872  }
873 
874  TString fmt_histo;
875  fmt_histo.Form("GetMomentEvolution_%s", hh->GetName());
876  KVNumberList lbins = "";
877  Int_t nmax = 0;
878  if (axis == "Y") nmax = hh->GetNbinsX();
879  else nmax = hh->GetNbinsY();
880 
881  Int_t npts = 0;
882  for (Int_t nn = 1; nn <= nmax; nn += 1) {
883  Double_t stat = 0;
884  if (axis == "Y") stat = ((TH1D*)hh->ProjectionY(fmt_histo.Data(), nn, nn))->Integral();
885  else stat = ((TH1D*)hh->ProjectionX(fmt_histo.Data(), nn, nn))->Integral();
886  if (stat > stat_min) {
887  npts += 1;
888  lbins.Add(nn);
889  }
890  gDirectory->Delete(fmt_histo.Data());
891  }
892  if (npts > 0) {
893  TGraphErrors* gr = new TGraphErrors(npts);
894  TH1D* hp;
895  npts = 0;
896  Double_t valx, valy, Evaly = 0, Evalx = 0;
897  lbins.Begin();
898  while (!lbins.End()) {
899  Int_t bin = lbins.Next();
900  if (axis == "Y") hp = (TH1D*)hh->ProjectionY(fmt_histo.Data(), bin, bin);
901  else hp = (TH1D*)hh->ProjectionX(fmt_histo.Data(), bin, bin);
902  cmx.Execute(hp, "1", valx);
903  if (Ecmx->IsValid()) Ecmx->Execute(hp, "1", Evalx);
904  if (momenty != "") {
905  cmy->Execute(hp, "1", valy);
906  if (Ecmy->IsValid()) Ecmy->Execute(hp, "1", Evaly);
907  gr->SetPoint(npts, valx, valy);
908  if (Evalx != 0 && Evaly != 0) gr->SetPointError(npts, Evalx, Evaly);
909  npts += 1;
910  }
911  else {
912  if (axis == "Y") {
913  valy = hh->GetXaxis()->GetBinCenter(bin);
914  Evaly = hh->GetXaxis()->GetBinWidth(bin) / 2.;
915  }
916  else {
917  valy = hh->GetYaxis()->GetBinCenter(bin);
918  Evaly = hh->GetYaxis()->GetBinWidth(bin) / 2.;
919  }
920  gr->SetPoint(npts, valy, valx);
921  if (Evalx != 0) gr->SetPointError(npts, Evaly, Evalx);
922  npts += 1;
923  }
924  gDirectory->Delete(fmt_histo.Data());
925  }
926  return gr;
927  }
928  else {
929  cout << "GetMomentEvolution(TH2*,TString ,TString ,TString) Aucun point dans le TGraph" << endl;
930  return nullptr;
931  }
932 
933 }
934 
935 
936 
937 //-------------------------------------------------
938 
945 
947 {
948 //-------------------------------------------------
949  // A partir de deux graphs ayant le meme nombre de points et le meme axe X,
950  // cette methode produit un graph correspondant a la correlation entre les deux axes Y
951  // Les inputs peuvent etre aussi bien des TGraph que des TGraphErrors dans ce dernier cas
952  // les barres d erreurs sont prises en compte
953 
954  Double_t* yy = gry->GetY();
955  Double_t* xx = grx->GetY();
956  Double_t* ey = 0;
957  Double_t* ex = 0;
958 
959  if (grx->GetN() != gry->GetN()) {
960  printf("ERREUR : KVHistoManipulator::LinkGraphs : les deux graphs n ont pas le meme nbre de points\n");
961  return 0;
962  }
963  Int_t npoints = grx->GetN();
964 
965  TGraph* corre = 0;
966  if (grx->InheritsFrom("TGraphErrors") || gry->InheritsFrom("TGraphErrors")) {
967  if (grx->InheritsFrom("TGraphErrors")) ex = grx->GetEY();
968  if (gry->InheritsFrom("TGraphErrors")) ey = gry->GetEY();
969  corre = new TGraphErrors(npoints, xx, yy, ex, ey);
970  }
971  else corre = new TGraph(npoints, xx, yy);
972 
973  TString name;
974  name.Form("corre_%s_VS_%s", gry->GetName(), grx->GetName());
975  corre->SetNameTitle(name.Data(), grx->GetTitle());
976 
977  return corre;
978 
979 }
980 
981 
982 
983 //###############################################################################################################
984 //-------------------------------------------------
985 
990 
992 {
993 //-------------------------------------------------
994  // Calcul le coefficient de correlation entre les variables X et Y
995  // d'un bidim... Equivalent a TH2F::GetCorrelationFactor() de ROOT
996  Double_t sumxy = 0;
997  Double_t sumx = 0, sumx2 = 0;
998  Double_t sumy = 0, sumy2 = 0;
999 
1000  Double_t compt = 0;
1001  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) {
1002  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1) {
1003  compt += hh->GetBinContent(nx, ny);
1004  sumxy += hh->GetBinContent(nx, ny) * hh->GetXaxis()->GetBinCenter(nx) * hh->GetYaxis()->GetBinCenter(ny);
1005  sumx += hh->GetBinContent(nx, ny) * hh->GetXaxis()->GetBinCenter(nx);
1006  sumy += hh->GetBinContent(nx, ny) * hh->GetYaxis()->GetBinCenter(ny);
1007  sumx2 += hh->GetBinContent(nx, ny) * pow(hh->GetXaxis()->GetBinCenter(nx), 2.);
1008  sumy2 += hh->GetBinContent(nx, ny) * pow(hh->GetYaxis()->GetBinCenter(ny), 2.);
1009  }
1010  }
1011 
1012  Double_t meanxy = sumxy / compt;
1013  Double_t meanx = sumx / compt;
1014  Double_t meany = sumy / compt;
1015  Double_t meanx2 = sumx2 / compt;
1016  Double_t sigmax = sqrt(meanx2 - pow(meanx, 2.));
1017  Double_t meany2 = sumy2 / compt;
1018  Double_t sigmay = sqrt(meany2 - pow(meany, 2.));
1019 
1020  Double_t rho = (meanxy - meanx * meany) / (sigmax * sigmay);
1021  return rho;
1022 
1023 }
1024 
1025 //###############################################################################################################"
1026 //-------------------------------------------------
1027 
1033 
1035 {
1036 //-------------------------------------------------
1037  // Retourne une liste contenant les projections par tranche de l'axe (TString axis="X" ou "Y")
1038  // remplissant une condition leur integral qui doit etre superieur à MinIntegral (=-1 par defaut)
1039  // si axis="X", les projections sur l'axe Y de l'histogramme est fait pour chaque bin de l'axe X
1040 
1041  if (!hh) {
1042  cout << "pointeur histogramme nul" << endl;
1043  return NULL;
1044  }
1045  TH1D* h1d = 0;
1046  TString proj_name;
1047  if (hh->InheritsFrom("TH2")) {
1048  KVList* list = new KVList();
1049  cout << "TH2" << endl;
1050  if (axis == "X") {
1051  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1) {
1052  Double_t integ = 0;
1053  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1)
1054  integ += hh->GetBinContent(nx, ny);
1055 
1056  if (integ > MinIntegral) {
1057  proj_name.Form("%s_bX_%d", hh->GetName(), nx);
1058  h1d = hh->ProjectionY(proj_name.Data(), nx, nx);
1059  h1d->SetTitle(Form("%lf", hh->GetXaxis()->GetBinCenter(nx)));
1060  list->Add(h1d);
1061  }
1062 
1063  }
1064  }
1065  else if (axis == "Y") {
1066  for (Int_t ny = 1; ny <= hh->GetNbinsY(); ny += 1) {
1067  Double_t integ = 0;
1068  for (Int_t nx = 1; nx <= hh->GetNbinsX(); nx += 1)
1069  integ += hh->GetBinContent(nx, ny);
1070 
1071  if (integ > MinIntegral) {
1072  proj_name.Form("%s_bY_%d", hh->GetName(), ny);
1073  h1d = hh->ProjectionX(proj_name.Data(), ny, ny);
1074  h1d->SetTitle(Form("%lf", hh->GetYaxis()->GetBinCenter(ny)));
1075  list->Add(h1d);
1076  }
1077  }
1078  }
1079  else {
1080  cout << "l option TString axis doit etre X ou Y" << endl;
1081  }
1082 
1083  return list;
1084  }
1085  else {
1086  cout << "cette methode n est prevue que pour les TH2 and sons" << endl;
1087  return NULL;
1088  }
1089 
1090 }
1091 
1092 
1093 //-------------------------------------------------
1094 
1103 
1105 {
1106 //-------------------------------------------------
1107  // Donne les valeurs permettant de decouper l'integral
1108  // d'un histograme en tranche de 10% de la stat total
1109  // retourne une KVNumberList indiquant les delimitation des tranches
1110  //
1111  // L'utilisateur doit effacer cette liste apres utilisation
1112  //
1113 
1114  if (!hh) {
1115  cout << "pointeur histogramme nul" << endl;
1116  return NULL;
1117  }
1118 
1119  TString proj_name;
1120  Double_t integral = 0;
1121  for (Int_t nx = 1; nx <= hh->GetXaxis()->GetNbins(); nx += 1) {
1122  integral += hh->GetBinContent(nx);
1123  }
1124 
1125  KVNumberList* nl = new KVNumberList();
1126 
1127  Double_t tranche = 0;
1128  printf("integral du spectre %lf -> tranche de %lf\n", integral, integral / ntranches);
1129 
1130  Int_t nt = 0;
1131  for (Int_t nx = hh->GetXaxis()->GetNbins(); nx >= 1; nx -= 1) {
1132  tranche += hh->GetBinContent(nx);
1133  //printf("nx=%d, nt=%d, tranche[nt]=%lf -> %lf\n",nx,nt,tranche,integral/ntranches);
1134  if (tranche >= integral / ntranches) {
1135 
1136  nt += 1;
1137  //printf("\tnouvelle tranche %d %d\n",nx,nt);
1138  nl->Add(nx);
1139  tranche = 0;
1140 
1141  }
1142  }
1143 
1144  //Verif
1145  /*
1146  Int_t sup=1;
1147  Int_t inf = 1;
1148  nl->Begin();
1149  while (!nl->End()){
1150  sup = nl->Next();
1151  printf("%d %d - %lf -> %lf\n",inf,sup,hh->Integral(inf,sup),hh->Integral(inf,sup)/integral*100);
1152  inf = sup+1;
1153  }
1154  sup = hh->GetXaxis()->GetNbins();
1155  printf("%d %d - %lf -> %lf\n",inf,sup,hh->Integral(inf,sup),hh->Integral(inf,sup)/integral*100);
1156  */
1157  return nl;
1158 }
1159 
1160 
1161 //-------------------------------------------------
1162 
1169 
1171 {
1172 //-------------------------------------------------
1173  // Cree un histo 2D en intervertissant les axes
1174  //
1175  // L'utilisateur doit effacer cet histo apres utilisation
1176  //
1177 
1178  if (!hh) {
1179  cout << "pointeur histogramme nul" << endl;
1180  return NULL;
1181  }
1182  if (!hh->InheritsFrom("TH2")) {
1183  Error("PermuteAxis", "methode definie uniquement pour les classes TH2 et filles");
1184  }
1185  Int_t nx = hh->GetNbinsX();
1186  Int_t ny = hh->GetNbinsY();
1187 
1188  TH2F* gg = new TH2F(
1189  Form("%s_perm", hh->GetName()),
1190  hh->GetTitle(),
1191  ny,
1192  hh->GetYaxis()->GetBinLowEdge(1),
1193  hh->GetYaxis()->GetBinLowEdge(ny + 1),
1194  nx,
1195  hh->GetXaxis()->GetBinLowEdge(1),
1196  hh->GetXaxis()->GetBinLowEdge(nx + 1)
1197  );
1198 
1199  for (Int_t xx = 1; xx <= nx; xx += 1) {
1200  for (Int_t yy = 1; yy <= ny; yy += 1) {
1201 
1202  gg->SetBinContent(yy, xx, hh->GetBinContent(xx, yy));
1203 
1204  }
1205  }
1206  return gg;
1207 }
1208 
1209 
1210 //-------------------------------------------------
1211 
1218 
1220 {
1221 //-------------------------------------------------
1222  // Cree un TGraph en intervertissant les axes
1223  //
1224  // L'utilisateur doit effacer ce graph apres utilisation
1225  //
1226 
1227  if (!gr) {
1228  cout << "pointeur graph nul" << endl;
1229  return NULL;
1230  }
1231  if (!gr->InheritsFrom("TGraph")) {
1232  Error("PermuteAxis", "methode definie uniquement pour les classes TGraph et filles");
1233  }
1234 
1235  TGraphErrors* gr2 = new TGraphErrors();
1236  for (Int_t nn = 0; nn < gr->GetN(); nn += 1) {
1237  Double_t px, py;
1238  gr->GetPoint(nn, px, py);
1239  gr2->SetPoint(nn, py, px);
1240  if (gr->InheritsFrom("TGraphErrors")) {
1241  gr2->SetPointError(nn, ((TGraphErrors*)gr)->GetErrorY(nn), ((TGraphErrors*)gr)->GetErrorX(nn));
1242  }
1243  }
1244 
1245  return gr2;
1246 }
1247 
1248 
1249 //-------------------------------------------------
1250 
1257 
1259 {
1260 //-------------------------------------------------
1261  // Cree un graph à partir d un histo
1262  //
1263  // L'utilisateur doit effacer ce TGraph apres utilisation
1264  //
1265 
1266  if (!pf) {
1267  cout << "pointeur histogramme nul" << endl;
1268  return NULL;
1269  }
1270  if (!pf->InheritsFrom("TProfile")) {
1271  //Error("MakeGraphFrom","methode definie uniquement pour les classes TProfile et filles");
1272  return NULL;
1273  }
1274  Int_t nx = pf->GetNbinsX();
1275 
1276  TGraphErrors* gr = new TGraphErrors();
1277  for (Int_t xx = 1; xx <= nx; xx += 1) {
1278  if (pf->GetBinEntries(xx) > 0) {
1279  gr->SetPoint(gr->GetN(), pf->GetBinCenter(xx), pf->GetBinContent(xx));
1280  if (Error)
1281  gr->SetPointError(gr->GetN() - 1, pf->GetBinWidth(xx) / 2, pf->GetBinError(xx));
1282  }
1283  }
1284 
1285  return gr;
1286 }
1287 
1288 
1289 
1301 
1303 {
1304  // Extract mean and standard deviation (if generated with mode "profs") or error on mean (with "prof")
1305  // from TProfile and put their evolution in 2 TGraphs.
1306  // \returns Pointer to graph containing mean values
1307  // \param sigma Pointer to graph containing standard deviation
1308  //
1309  // Example of use:
1310  //~~~~{.cpp}
1311  // TGraph* sig_graf;
1312  // TGraph* mean_graf = HM.ExtractMeanAndSigmaFromProfile(pf, sig_graf);
1313  //~~~~
1314 
1315  Int_t nx = pf->GetNbinsX();
1316 
1317  TGraph* gr = new TGraph;
1318  sigma = new TGraph;
1319  int i = 0;
1320  for (Int_t xx = 1; xx <= nx; xx += 1) {
1321  if (pf->GetBinEntries(xx) > 0) {
1322  gr->SetPoint(i, pf->GetBinCenter(xx), pf->GetBinContent(xx));
1323  sigma->SetPoint(i, pf->GetBinCenter(xx), pf->GetBinError(xx));
1324  ++i;
1325  }
1326  }
1327 
1328  return gr;
1329 }
1330 
1331 
1332 // //-------------------------------------------------
1333 // TGraphErrors* KVHistoManipulator::MakeGraphFrom(TH1* pf, Bool_t Error)
1334 // {
1335 // //-------------------------------------------------
1336 // // Cree un graph à partir d un histo
1337 // //
1338 // // L'utilisateur doit effacer ce TGraph apres utilisation
1339 // //
1340 //
1341 // if (!pf) {
1342 // cout << "pointeur histogramme nul" << endl;
1343 // return NULL;
1344 // }
1345 // if (!pf->InheritsFrom("TH1")) {
1346 // //Error("MakeGraphFrom","methode definie uniquement pour les classes TProfile et filles");
1347 // }
1348 // else if (pf->InheritsFrom("TProfile"))
1349 // {
1350 // return
1351 // }
1352 // Int_t nx = pf->GetNbinsX();
1353 //
1354 // TGraphErrors* gr = new TGraphErrors();
1355 // for (Int_t xx = 1; xx <= nx; xx += 1) {
1356 // if (pf->GetBinEntries(xx) > 0) {
1357 // gr->SetPoint(gr->GetN(), pf->GetBinCenter(xx), pf->GetBinContent(xx));
1358 // if (Error)
1359 // gr->SetPointError(gr->GetN() - 1, pf->GetBinWidth(xx) / 2, pf->GetBinError(xx));
1360 // }
1361 // }
1362 //
1363 // return gr;
1364 // }
1365 
1366 //###############################################################################################################"
1367 //-------------------------------------------------
1368 
1371 
1372 void KVHistoManipulator::DefinePattern(TH1* ob, TString titleX, TString titleY, TString labelX, TString labelY)
1373 {
1374 //-------------------------------------------------
1375  DefinePattern(ob->GetXaxis(), titleX, labelX);
1376  DefinePattern(ob->GetYaxis(), titleY, labelY);
1377 
1378 }
1379 
1380 //###############################################################################################################"
1381 //-------------------------------------------------
1382 
1385 
1386 void KVHistoManipulator::DefinePattern(TGraph* ob, TString titleX, TString titleY, TString labelX, TString labelY)
1387 {
1388 //-------------------------------------------------
1389  DefinePattern(ob->GetXaxis(), titleX, labelX);
1390  DefinePattern(ob->GetYaxis(), titleY, labelY);
1391 
1392 }
1393 
1394 //###############################################################################################################"
1395 //-------------------------------------------------
1396 
1399 
1400 void KVHistoManipulator::DefinePattern(TF1* ob, TString titleX, TString titleY, TString labelX, TString labelY)
1401 {
1402 //-------------------------------------------------
1403  DefinePattern(ob->GetXaxis(), titleX, labelX);
1404  DefinePattern(ob->GetYaxis(), titleY, labelY);
1405 
1406 }
1407 
1408 //###############################################################################################################"
1409 //-------------------------------------------------
1410 
1413 
1415 {
1416 //-------------------------------------------------
1417 
1418  TObjArray* tok = NULL;
1419 
1420  if (!title.IsNull()) {
1421  tok = title.Tokenize(" ");
1422  if (tok->GetEntries() == 3) {
1423  ax->SetTitleFont(((TObjString*)tok->At(0))->GetString().Atoi());
1424  ax->SetTitleSize(((TObjString*)tok->At(1))->GetString().Atof());
1425  ax->SetTitleOffset(((TObjString*)tok->At(2))->GetString().Atof());
1426  }
1427  }
1428 
1429  if (!label.IsNull()) {
1430  tok = label.Tokenize(" ");
1431  if (tok->GetEntries() == 3) {
1432  ax->SetLabelFont(((TObjString*)tok->At(0))->GetString().Atoi());
1433  ax->SetLabelSize(((TObjString*)tok->At(1))->GetString().Atof());
1434  ax->SetLabelOffset(((TObjString*)tok->At(2))->GetString().Atof());
1435  }
1436  }
1437 
1438  if (tok) delete tok;
1439 
1440 }
1441 
1442 
1443 //###############################################################################################################"
1444 //-------------------------------------------------
1445 
1448 
1450 {
1451 //-------------------------------------------------
1452 
1453  TObjArray* tok = NULL;
1454  if (ob->IsA()->InheritsFrom("TAttLine")) {
1455  if (!line.IsNull()) {
1456  tok = line.Tokenize(" ");
1457  if (tok->GetEntries() == 3) {
1458  ob->SetLineColor(((TObjString*)tok->At(0))->GetString().Atoi());
1459  ob->SetLineStyle(((TObjString*)tok->At(1))->GetString().Atoi());
1460  ob->SetLineWidth(((TObjString*)tok->At(2))->GetString().Atoi());
1461  }
1462  }
1463  }
1464  if (tok) delete tok;
1465 
1466 }
1467 
1468 
1469 //###############################################################################################################"
1470 //-------------------------------------------------
1471 
1474 
1476 {
1477 //-------------------------------------------------
1478 
1479  TObjArray* tok = NULL;
1480  if (ob->IsA()->InheritsFrom("TAttMarker")) {
1481  if (!marker.IsNull()) {
1482  tok = marker.Tokenize(" ");
1483  if (tok->GetEntries() == 3) {
1484  ob->SetMarkerColor(((TObjString*)tok->At(0))->GetString().Atoi());
1485  ob->SetMarkerStyle(((TObjString*)tok->At(1))->GetString().Atoi());
1486  ob->SetMarkerSize(((TObjString*)tok->At(2))->GetString().Atof());
1487  }
1488  }
1489  }
1490  if (tok) delete tok;
1491 
1492 }
1493 
1494 
1495 //###############################################################################################################"
1496 //-------------------------------------------------
1497 
1500 
1502 {
1503 //-------------------------------------------------
1504 
1505  DefineLineStyle((TAttLine*)ob, line);
1506  DefineMarkerStyle((TAttMarker*)ob, marker);
1507 
1508 }
1509 
1510 
1511 //###############################################################################################################"
1512 //-------------------------------------------------
1513 
1516 
1518 {
1519 //-------------------------------------------------
1520 
1521  ob->GetXaxis()->SetTitle(xtit);
1522  ob->GetYaxis()->SetTitle(ytit);
1523 
1524 }
1525 
1526 //###############################################################################################################"
1527 //-------------------------------------------------
1528 
1531 
1533 {
1534 //-------------------------------------------------
1535 
1536  ob->GetXaxis()->SetTitle(xtit);
1537  ob->GetYaxis()->SetTitle(ytit);
1538 
1539 }
1540 
1541 //###############################################################################################################"
1542 //-------------------------------------------------
1543 
1546 
1548 {
1549 //-------------------------------------------------
1550 
1551  ob->GetXaxis()->SetTitle(xtit);
1552  ob->GetYaxis()->SetTitle(ytit);
1553 
1554 }
1555 
1556 //###############################################################################################################"
1557 //-------------------------------------------------
1558 
1568 
1570 {
1571  // Return value of abscissa X for which the interpolated value
1572  // of the histogram contents is equal to the given value, val.
1573  // We use the false position method (which should always converge...)
1574  // eps is required precision, i.e. convergence condition is that no further change
1575  // in result greater than eps is found.
1576  // nmax = maximum number of iterations
1577  // A solution is searched for X between the limits Xmin and Xmax of the X axis of the histo
1578  // unless arguments (xmin,xmax) are given to bracket the search
1579 
1580  TSpline5* spline = new TSpline5(ob);
1581  Double_t Xmax;
1582  Double_t Xmin;
1583  if (xmin == xmax) {
1584  Xmax = ob->GetXaxis()->GetXmax();
1585  Xmin = ob->GetXaxis()->GetXmin();
1586  }
1587  else {
1588  Xmax = xmax;
1589  Xmin = xmin;
1590  }
1591 
1592  Int_t n, side = 0;
1593  Double_t r = 0, fr, fs, s, ft, t;
1594  s = Xmin;
1595  t = Xmax;
1596  fs = spline->Eval(s) - val;
1597  ft = spline->Eval(t) - val;
1598 
1599  for (n = 1; n <= nmax; n++) {
1600  r = (fs * t - ft * s) / (fs - ft);
1601  if (fabs(t - s) < eps * fabs(t + s)) break;
1602  fr = spline->Eval(r) - val;
1603 
1604  if (fr * ft > 0) {
1605  t = r;
1606  ft = fr;
1607  if (side == -1) fs /= 2;
1608  side = -1;
1609  }
1610  else if (fs * fr > 0) {
1611  s = r;
1612  fs = fr;
1613  if (side == +1) ft /= 2;
1614  side = +1;
1615  }
1616  else break;
1617  }
1618  delete spline;
1619  return r;
1620 }
1621 
1622 //###############################################################################################################"
1623 //-------------------------------------------------
1624 
1662 
1663 TF1* KVHistoManipulator::RescaleX(TH1* hist1, TH1* hist2, Int_t degree, Double_t* params,
1664  Int_t npoints, const Char_t* direction, Double_t xmin, Double_t xmax, Double_t qmin, Double_t qmax, Double_t eps)
1665 {
1666  // Find the polynomial transformation of the X-axis of 1-D histogram hist1
1667  // so that the distribution ressembles that of histogram hist2.
1668  // Returns a TF1 which can be used to rescale hist1 (hist1 and hist2 are not modified).
1669  // User's responsibility to delete the TF1.
1670  // After fitting, the array params is filled with:
1671  // params[0] = a0
1672  // params[1] = a1
1673  // ...
1674  // params[degree] = an
1675  // params[degree+1] = Chisquare/NDF
1676  // Therefore params MUST BE at least of dimension (degree+2)
1677  //
1678  // npoints : by default (npoints=-1), we use npoints=degree+2 values of comparison
1679  // of the two cumulative distributions (see below).
1680  // more comparison points can be used by setting npoints>=degree+2.
1681  // direction : by default ("C") we use the cumulative histogram summed from low x to high x.
1682  // if direction="D", we use the cumulative histogram summed from high x to low x.
1683  // xmin, xmax : range of values of abscissa used to build cumulative histograms. default
1684  // (xmin=xmax=-1) include all values.
1685  // qmin, qmax : minimum & maximum values of cumulative histograms used for the
1686  // comparison (see below). by default qmin=0.05, qmax=0.95.
1687  //
1688  // METHOD
1689  // ======
1690  // 'hist1' contains the distribution P1 of variable X1
1691  // 'hist2' contains the distribution P2 of variable X2
1692  // Supposing that we can write X2=f_n(X1), with f_n(x)=a0 + a1*x + a2*x^2 + ... + an*x^n,
1693  // what are the parameters of the polynomial for which P1(f_n(X1))=P2(X2) ?
1694  //
1695  // Consider the cumulative distributions, C1(X1) and C2(X2).
1696  // For npoints=2 we compare the 2 X1 & X2 values for which C1=C2=qmin, qmax
1697  // For npoints=3 we compare the 3 X1 & X2 values for which C1=C2=qmin, qmin+(qmax-qmin)/2, qmax
1698  // For npoints=4 we compare the 4 X1 & X2 values for which C1=C2=qmin, qmin+(qmax-qmin)/3, qmin+2*(qmax-qmin)/3, qmax
1699  // etc. etc.
1700  // In each case we fit the npoints couples (X1,X2) with f_n
1701  //
1702 
1703  int i;
1704  // calculate comparison points
1705  npoints = TMath::Max(npoints, degree + 2);
1706  TString func_name = Form("pol%d", degree);
1707  TF1* fonc = new TF1("f", func_name.Data());
1708  fonc->SetName(Form("RescaleX-%s", func_name.Data()));
1709  RescaleX(hist1, hist2, fonc, npoints, direction, xmin, xmax, qmin, qmax, eps);
1710  for (i = 0; i < degree + 1; i++) {
1711  params[i] = fonc->GetParameter(i);
1712  }
1713  Double_t chisquare = fonc->GetChisquare();
1714  if (fonc->GetNDF() > 0.0) chisquare /= fonc->GetNDF();
1715  params[degree + 1] = chisquare;
1716 
1717  return fonc;
1718 }
1719 
1720 //###############################################################################################################"
1721 //-------------------------------------------------
1722 
1788 
1790  Option_t* opt, Int_t npoints, const Char_t* direction, Double_t xmin, Double_t xmax, Double_t qmin, Double_t qmax,
1791  Double_t eps)
1792 {
1793  // Uses RescaleX(TH1* hist1, TH1* hist2, Int_t degree, Double_t* params, Double_t eps)
1794  // to find a polynomial transformation of 'hist1' abscissa so that its
1795  // distribution resembles that of 'hist2', then generates a new rescaled version of 'hist1'.
1796  //
1797  // degree = degree of polynomial to use
1798  // params = array of dimension [degree+2], after rescaling it will contain
1799  // the values of fitted parameters of polynomial, plus the Chi2/NDF of the fit:
1800  // params[0] = a0
1801  // params[1] = a1
1802  // ...
1803  // params[degree] = an
1804  // params[degree+1] = Chisquare/NDF = Chisquare (NDF is always equal to 1)
1805  //
1806  // npoints : by default (npoints=-1), we use npoints=degree+2 values of comparison
1807  // of the two cumulative distributions (see method RescaleX).
1808  // more comparison points can be used by setting npoints>=degree+2.
1809  //
1810  // direction : by default ("C") we use the cumulative histogram summed from low x to high x.
1811  // if direction="D", we use the cumulative histogram summed from high x to low x.
1812  // xmin, xmax : range of values of abscissa used to build cumulative histograms. default
1813  // (xmin=xmax=-1) include all values.
1814  // qmin, qmax : minimum & maximum values of cumulative histograms used for the
1815  // comparison (see method RescaleX). by default qmin=0.05, qmax=0.95.
1816  //
1817  // eps = relative precision used to find comparison points of histos (default = 1.e-07)
1818  //
1819  // OPTIONS
1820  // =======
1821  // opt = "norm" : rescaled histogram normalised to have same integral as hist2
1822  // opt = "bins" : rescaled histogram will have same number of bins & same limits as hist2
1823  // opt = "normbins" |
1824  // opt = "binsnorm" |--> rescaled histogram can be superposed and added to hist2
1825  //
1826  // EXAMPLE OF USE
1827  // =======================
1828  // In the following example, we fill two histograms with different numbers of random
1829  // values drawn from two Gaussian distributions with different centroids and widths.
1830  // We also add to each histogram a 'pedestal' peak which is unrelated to the 'physical'
1831  // distributions, and significant enough so that it does not permit a correct scaling of
1832  // the physical part of the distribution.
1833  //
1834  // We can overcome the problem of the 'pedestal' by
1835  // using the 'inverse cumulated distribution' and excluding the channels
1836  // where the pedestals are present. The correct scaling of the physical
1837  // distributions is recovered, as shown below:
1838  /*
1839  BEGIN_MACRO(source)
1840  {
1841  TH1F* h10 = new TH1F("h10","gaussian",4096,-.5,4095.5);
1842  TF1 g10("g10","gaus(0)",0,4100);
1843  g10.SetParameters(1,1095,233);
1844  h10->FillRandom("g10",56130);
1845  h10->SetBinContent(85,13425);
1846  TH1F* h20 = new TH1F("h20","gaussian",4096,-.5,4095.5);
1847  g10.SetParameters(1,1673,487);
1848  h20->FillRandom("g10",21370);
1849  h20->SetBinContent(78,17900);
1850  KVHistoManipulator HM2;
1851  HM2.SetVisDebug(); // turn on visual debugging -> create canvas showing rescaling procedure
1852  Double_t params0[10];
1853  // make rescaling using inverse cumulative distribution, limit to x=[100,4095]
1854  TH1* sc30 =HM2.MakeHistoRescaleX(h10,h20,1,params0,"binsnorm",5,"D",100,4095);
1855  return gROOT->GetListOfCanvases()->FindObject("VDCanvas");
1856  }
1857  END_MACRO
1858  */
1859 
1860  TF1* scalefunc = RescaleX(hist1, hist2, degree, params, npoints, direction, xmin, xmax, qmin, qmax, eps);
1861  TString options(opt);
1862  options.ToUpper();
1863  Bool_t norm = options.Contains("NORM");
1864  Bool_t bins = options.Contains("BINS");
1865  Int_t nx = (bins ? hist2->GetNbinsX() : -1);
1866  Double_t nxmin = (bins ? hist2->GetXaxis()->GetXmin() : -1);
1867  Double_t nxmax = (bins ? hist2->GetXaxis()->GetXmax() : -1);
1868  TH1* scalehisto = ScaleHisto(hist1, scalefunc, 0, nx, -1, nxmin, nxmax, -1.0, -1.0, "width");
1869  if (norm) scalehisto->Scale(hist2->Integral("width") / scalehisto->Integral("width"));
1870  if (kVisDebug) {
1871  fVDCanvas->cd(4);
1872  scalehisto->DrawCopy()->SetLineColor(kRed);
1873  hist2->DrawCopy("same")->SetLineColor(kBlack);
1874  gPad->SetLogy(kTRUE);
1875  gPad->Modified();
1876  gPad->Update();
1877  }
1878  delete scalefunc;
1879  return scalehisto;
1880 }
1881 
1882 //###############################################################################################################"
1883 //-------------------------------------------------
1884 
1909 
1910 void KVHistoManipulator::RescaleX(TH1* hist1, TH1* hist2, TF1* scale_func, Int_t npoints,
1911  const Char_t* direction, Double_t xmin, Double_t xmax, Double_t qmin, Double_t qmax, Double_t eps)
1912 {
1913  // Find the transformation of the X-axis of 1-D histogram hist1
1914  // so that the distribution ressembles that of histogram hist2.
1915  // The user provides a function f(x) (TF1* scale_func) which is supposed to
1916  // transform the abscissa X1 of 'hist1' in such a way that P1(f(X1)) = P2(X2).
1917  // We fit 'npoints' comparison points (see below), npoints>=2.
1918  //
1919  // direction : by default ("C") we use the cumulative histogram summed from low x to high x.
1920  // if direction="D", we use the cumulative histogram summed from high x to low x.
1921  // xmin, xmax : range of values of abscissa used to build cumulative histograms. default
1922  // (xmin=xmax=-1) include all values.
1923  // qmin, qmax : minimum & maximum values of cumulative histograms used for the
1924  // comparison (see below). by default qmin=0.05, qmax=0.95.
1925  // METHOD
1926  // ======
1927  // 'hist1' contains the distribution P1 of variable X1
1928  // 'hist2' contains the distribution P2 of variable X2
1929  // Supposing that we can write X2=f(X1), we compare the abscissa of different
1930  // points of the two cumulative distributions, C1(X1) and C2(X2).
1931  // For npoints=2 we compare the 2 X1 & X2 values for which C1=C2=qmin, qmax
1932  // For npoints=3 we compare the 3 X1 & X2 values for which C1=C2=qmin, qmin+(qmax-qmin)/2, qmax
1933  // For npoints=4 we compare the 4 X1 & X2 values for which C1=C2=qmin, qmin+(qmax-qmin)/3, qmin+2*(qmax-qmin)/3, qmax
1934  // etc. etc.
1935  // In each case we fit the 'npoints' couples (X1,X2) with the TF1 pointed to by 'scale_func'
1936 
1937  if (kVisDebug) {
1938  if (!fVDCanvas) fVDCanvas = new TCanvas("VDCanvas", "KVHistoManipulator::RescaleX");
1939  gStyle->SetOptStat("");
1940  fVDCanvas->Clear();
1941  fVDCanvas->Divide(2, 2);
1942  fVDCanvas->cd(1);
1943  hist1->DrawCopy()->SetLineColor(kBlue);
1944  hist2->DrawCopy("same")->SetLineColor(kBlack);
1945  gPad->SetLogy(kTRUE);
1946  gPad->Modified();
1947  gPad->Update();
1948  }
1949  int i;
1950  npoints = TMath::Max(2, npoints);
1951  Info("RescaleX", "Calculating transformation of histo %s using reference histo %s, %d points of comparison",
1952  hist1->GetName(), hist2->GetName(), npoints);
1953  TH1* cum1 = 0;
1954  TH1* cum2 = 0;
1955  if (xmin > -1 && xmax > -1) {
1956  cum1 = CumulatedHisto(hist1, xmin, xmax, direction, "max");
1957  cum2 = CumulatedHisto(hist2, xmin, xmax, direction, "max");
1958  }
1959  else {
1960  cum1 = CumulatedHisto(hist1, direction, -1, -1, "max");
1961  cum2 = CumulatedHisto(hist2, direction, -1, -1, "max");
1962  }
1963  if (kVisDebug) {
1964  fVDCanvas->cd(2);
1965  cum1->DrawCopy()->SetLineColor(kBlue);
1966  cum2->DrawCopy("same")->SetLineColor(kBlack);
1967  gPad->Modified();
1968  gPad->Update();
1969  }
1970  // calculate comparison points
1971  Double_t* quantiles = new Double_t[npoints];
1972  Double_t delta_q = (qmax - qmin) / (1.0 * (npoints - 1));
1973  for (i = 0; i < npoints; i++) quantiles[i] = qmin + i * delta_q;
1974  // get X1 and X2 values corresponding to quantiles
1975  Double_t* X1 = new Double_t[npoints];
1976  Double_t* X2 = new Double_t[npoints];
1977  for (i = 0; i < npoints; i++) {
1978  X1[i] = GetX(cum1, quantiles[i], eps);
1979  X2[i] = GetX(cum2, quantiles[i], eps);
1980  }
1981  for (i = 0; i < npoints; i++) {
1982  printf("COMPARISON: i=%d quantile=%f X1=%f X2=%f\n",
1983  i, quantiles[i], X1[i], X2[i]);
1984  }
1985  // fill TGraph with points to fit
1986  TGraph* fitgraph = new TGraph(npoints, X1, X2);
1987  TString fitoptions = "0N";
1988  if (kVisDebug) fitoptions = "";
1989  if (fitgraph->Fit(scale_func, fitoptions.Data()) != 0) {
1990  Error("RescaleX", "Fitting with function %s failed to converge",
1991  scale_func->GetName());
1992  }
1993  if (kVisDebug) {
1994  fVDCanvas->cd(3);
1995  fitgraph->SetMarkerStyle(20);
1996  gStyle->SetOptStat(1011);
1997  fitgraph->DrawClone("ap");
1998  gPad->Modified();
1999  gPad->Update();
2000  }
2001  delete cum1;
2002  delete cum2;
2003  delete fitgraph;
2004  delete [] quantiles;
2005  delete [] X1;
2006  delete [] X2;
2007 }
2008 
2009 //###############################################################################################################"
2010 //-------------------------------------------------
2011 
2035 
2036 TH1* KVHistoManipulator::MakeHistoRescaleX(TH1* hist1, TH1* hist2, TF1* scale_func, Int_t npoints,
2037  Option_t* opt, const Char_t* direction, Double_t xmin, Double_t xmax, Double_t qmin, Double_t qmax, Double_t eps)
2038 {
2039  // Uses RescaleX(TH1* hist1, TH1* hist2, TF1* scale_func, Int_t npoints, Double_t eps)
2040  // to transform 'hist1' abscissa using TF1 'scale_func' so that its
2041  // distribution resembles that of 'hist2', then generates a new rescaled version of 'hist1'.
2042  //
2043  // npoints = number of points of comparison between the two histograms.
2044  // Make sure this is sufficient for the TF1 used in the transformation.
2045  // i.e. for a polynomial of degree 1 (a+bx), 2 points are enough,
2046  // 3 will give a meaningful Chi^2 value.
2047  // direction : by default ("C") we use the cumulative histogram summed from low x to high x.
2048  // if direction="D", we use the cumulative histogram summed from high x to low x.
2049  // xmin, xmax : range of values of abscissa used to build cumulative histograms. default
2050  // (xmin=xmax=-1) include all values.
2051  // qmin, qmax : minimum & maximum values of cumulative histograms used for the
2052  // comparison (see method RescaleX). by default qmin=0.05, qmax=0.95.
2053  // eps = relative precision used to find comparison points of histos (default = 1.e-07)
2054  //
2055  // OPTIONS
2056  // =======
2057  // opt = "norm" : rescaled histogram normalised to have same integral as hist2
2058  // opt = "bins" : rescaled histogram will have same number of bins & same limits as hist2
2059  // opt = "normbins" |
2060  // opt = "binsnorm" |--> rescaled histogram can be superposed and added to hist2
2061 
2062  RescaleX(hist1, hist2, scale_func, npoints, direction, xmin, xmax, qmin, qmax, eps);
2063  TString options(opt);
2064  options.ToUpper();
2065  Bool_t norm = options.Contains("NORM");
2066  Bool_t bins = options.Contains("BINS");
2067  Int_t nx = (bins ? hist2->GetNbinsX() : -1);
2068  Double_t nxmin = (bins ? hist2->GetXaxis()->GetXmin() : -1);
2069  Double_t nxmax = (bins ? hist2->GetXaxis()->GetXmax() : -1);
2070  TH1* scalehisto = ScaleHisto(hist1, scale_func, 0, nx, -1, nxmin, nxmax, -1.0, -1.0, "width");
2071  if (norm) scalehisto->Scale(hist2->Integral("width") / scalehisto->Integral("width"));
2072  if (kVisDebug) {
2073  fVDCanvas->cd(4);
2074  scalehisto->DrawCopy()->SetLineColor(kRed);
2075  hist2->DrawCopy("same")->SetLineColor(kBlack);
2076  gPad->SetLogy(kTRUE);
2077  gPad->Modified();
2078  gPad->Update();
2079  }
2080  return scalehisto;
2081 }
2082 
2083 //-------------------------------------------------
2084 
2088 
2089 TH1* KVHistoManipulator::CumulatedHisto(TH1* hh, Double_t xmin, Double_t xmax, const TString& direction, Option_t* norm)
2090 {
2091  // Cumule le contenu de l histo hh entre xmin et xmax et retourne l histo correspondant
2092  // Voir CumulatedHisto(TH1* ,TString ,Int_t ,Int_t , Option_t*).
2093  Int_t bmin = hh->FindBin(xmin);
2094  Int_t bmax = hh->FindBin(xmax);
2095  if (bmax > hh->GetNbinsX()) bmax = hh->GetNbinsX();
2096  return CumulatedHisto(hh, direction, bmin, bmax, norm);
2097 }
2098 
2099 
2100 //-------------------------------------------------
2101 
2109 
2111 {
2112  //Camcul du chi2 entre un histogramme et une fonction donnée
2113  //Warning : ne prend en compte que les bins avec une stat>0
2114  //de l histogramme
2115  // norm = kTRUE (default), normalise la valeur du Chi2 au nombre de bin pris en compte
2116  // err = kTRUE (default), prend en compte les erreurs du contenu des bins dans le calcul
2117  // (si celle ci est >0)
2118  Double_t chi2 = 0;
2119  Int_t nbre = 0;
2120  if (h1->InheritsFrom("TH2")) {
2121  Double_t xx[2];
2122  for (Int_t nx = 1; nx < h1->GetNbinsX(); nx += 1)
2123  for (Int_t ny = 1; ny <= h1->GetNbinsY(); ny += 1) {
2124  Double_t hval = h1->GetBinContent(nx, ny);
2125  if (hval > 0) {
2126  if (err) {
2127  Double_t herr = h1->GetBinError(nx, ny);
2128  if (herr > 0) {
2129  nbre += 1;
2130  xx[0] = h1->GetXaxis()->GetBinCenter(nx);
2131  xx[1] = h1->GetYaxis()->GetBinCenter(ny);
2132  Double_t fval = f1->EvalPar(xx, para);
2133  chi2 += TMath::Power((hval - fval) / herr, 2.);
2134  }
2135  }
2136  else {
2137  nbre += 1;
2138  xx[0] = h1->GetXaxis()->GetBinCenter(nx);
2139  xx[1] = h1->GetYaxis()->GetBinCenter(ny);
2140  Double_t fval = f1->EvalPar(xx, para);
2141  chi2 += TMath::Power((hval - fval), 2.);
2142  }
2143  }
2144  }
2145  }
2146  else {
2147  Double_t xx[1];
2148  for (Int_t nx = 1; nx < h1->GetNbinsX(); nx += 1) {
2149  Double_t hval = h1->GetBinContent(nx);
2150  if (hval > 0) {
2151  if (err) {
2152  Double_t herr = h1->GetBinError(nx);
2153  if (herr > 0) {
2154  nbre += 1;
2155  xx[0] = h1->GetXaxis()->GetBinCenter(nx);
2156  Double_t fval = f1->EvalPar(xx, para);
2157  chi2 += TMath::Power((hval - fval) / herr, 2.);
2158  }
2159  }
2160  else {
2161  nbre += 1;
2162  xx[0] = h1->GetXaxis()->GetBinCenter(nx);
2163  Double_t fval = f1->EvalPar(xx, para);
2164  chi2 += TMath::Power((hval - fval), 2.);
2165  }
2166  }
2167  }
2168  }
2169 
2170  if (nbre == 0) {
2171  printf("Warning, KVHistoManipulator::GetChisquare :\n\taucune cellule price en compte dans le calcul du Chi2 ...\n");
2172  return -1;
2173  }
2174  return (norm ? chi2 / nbre : chi2);
2175 
2176 
2177 }
2178 
2179 //-------------------------------------------------
2180 
2188 
2190 {
2191  //Calcul du chi2 entre un histogramme et une fonction donnée
2192  //Warning : ne prend en compte que les bins avec une stat>0
2193  //de l histogramme
2194  // norm = kTRUE (default), normalise la valeur du Chi2 au nombre de bin pris en compte
2195  // err = kTRUE (default), prend en compte les erreurs du contenu des bins dans le calcul
2196  // (si celle ci est >0)
2197  Double_t chi2 = 0;
2198  Int_t nbre = 0;
2199  if (h1->InheritsFrom("TH2")) {
2200  Double_t xx[2];
2201  for (Int_t nx = 1; nx < h1->GetNbinsX(); nx += 1)
2202  for (Int_t ny = 1; ny <= h1->GetNbinsY(); ny += 1) {
2203  Double_t hval = h1->GetBinContent(nx, ny);
2204  if (hval > 0) {
2205  nbre += 1;
2206  xx[0] = h1->GetXaxis()->GetBinCenter(nx);
2207  xx[1] = h1->GetYaxis()->GetBinCenter(ny);
2208  Double_t fval = f1->EvalPar(xx, para);
2209  Double_t logfval = TMath::Log(fval);
2210  chi2 += fval - 1 * hval * logfval;
2211  }
2212  }
2213  }
2214  else {
2215  Double_t xx[1];
2216  for (Int_t nx = 1; nx < h1->GetNbinsX(); nx += 1) {
2217  Double_t hval = h1->GetBinContent(nx);
2218  if (hval > 0) {
2219  nbre += 1;
2220  xx[0] = h1->GetXaxis()->GetBinCenter(nx);
2221  Double_t fval = f1->EvalPar(xx, para);
2222  Double_t logfval = TMath::Log(fval);
2223  chi2 += fval - 1 * hval * logfval;
2224  }
2225  }
2226  }
2227 
2228  if (nbre == 0) {
2229  printf("Warning, KVHistoManipulator::GetChisquare :\n\taucune cellule price en compte dans le calcul du Chi2 ...\n");
2230  return -1;
2231  }
2232  return (norm ? chi2 / nbre : chi2);
2233 
2234 }
2235 
2236 
2237 
2244 
2246 {
2247  // Create and fill a TGraph containing, for each point in G1 and G2,
2248  // the value of (y1/y2).
2249  // G1 & G2 should have the same number of points, with the same x-coordinates
2250  // i.e. x1 = x2 for all points
2251  // if any y2 value = 0, we set the corresponding point's y=0
2252 
2253  Int_t npoints = G1->GetN();
2254  if (G2->GetN() != npoints) {
2255  Error("DivideGraphs", "Graphs must have same number of points");
2256  return nullptr;
2257  }
2258  // make copy of G1
2259  AUTO_NEW_CTOR(TGraph, Gdiv)(*G1);
2260  Gdiv->SetName(Form("%s_divided_by_%s", G1->GetName(), G2->GetName()));
2261  Gdiv->SetTitle(Form("%s divided by %s", G1->GetTitle(), G2->GetTitle()));
2262  Double_t* X = G1->GetX();
2263  Double_t* Y1 = G1->GetY();
2264  Double_t* Y2 = G2->GetY();
2265  for (int i = 0; i < npoints; i++) {
2266  if (Y2[i] != 0) Gdiv->SetPoint(i, X[i], Y1[i] / Y2[i]);
2267  else Gdiv->SetPoint(i, X[i], 0.);
2268  }
2269  return Gdiv;
2270 }
2271 
2272 
2273 
2275 
2277 {
2278  Int_t npoints = g0->GetN();
2279  if (g1->GetN() != npoints) {
2280  Error("ComputeNewGraphFrom", "Graphs must have same number of points %d != %d", npoints, g1->GetN());
2281  return nullptr;
2282  }
2283 
2284  TF1 f1("func_ComputeNewGraphFrom", formula, 0, 1);
2285  if (f1.IsZombie() || f1.GetNpar() != 2) {
2286  Error("ComputeNewGraphFrom", "formula %s for the operation is not valid or has not 2 parameters", formula.Data());
2287  return nullptr;
2288  }
2289 
2290  auto gfinal = new TGraph;
2291  gfinal->SetName(Form("from_%s_%s", g0->GetName(), g1->GetName()));
2292  Double_t* x0 = g0->GetX();
2293  Double_t* y0 = g0->GetY();
2294 
2295  Double_t* x1 = g1->GetX();
2296  Double_t* y1 = g1->GetY();
2297 
2298  for (Int_t ii = 0; ii < npoints; ii++) {
2299  f1.SetParameters(y0[ii], y1[ii]);
2300  if (x1[ii] != x0[ii])
2301  Warning("ComputeNewGraphFrom", "X values are different for the same point %d : %lf %lf", ii, x0[ii], x1[ii]);
2302  Double_t result = f1.Eval(x0[ii]);
2303  gfinal->SetPoint(ii, x0[ii], result);
2304  }
2305  return gfinal;
2306 }
2307 
2308 
2309 
2321 
2323 {
2324 
2325  //generalization of the previous method ComputeNewGraphFrom(TGraph* g0, TGraph* g1, TString formula)
2326  //
2327  //create a new TGraph from the combination of the graph in the list
2328  //new errors are not computed
2329  //x-values are unchanged
2330  //from a given list "lgr", compute expression indicated in the "formula", with the following prescription :
2331  //the "i" position of the graph in the list will correspond to the "[i]" parameters of the formula
2332  //for each points of the graphs, the formula is computed with the y-values of the graphs and the new y-value is set to the new graph
2333  //Examples
2334  //if there is 2 graphs in the list, and the formula "[0]+[1]" is set, the method will give a new TGraph with the sum of the y-values of the two TGraphs
2335 
2336  Int_t ngr = lgr->GetEntries();
2337  TF1 f1("func_ComputeNewGraphFrom", formula, 0, 1);
2338  if (f1.IsZombie()) {
2339  Error("ComputeNewGraphFrom", "wrong formula %s, check the expression", formula.Data());
2340  return nullptr;
2341  }
2342  if (f1.GetNpar() != ngr) {
2343  Error("ComputeNewGraphFrom", "number of parameters (%d) of formula %s is not the same as the number of graphics (%d) in the list", f1.GetNpar(), formula.Data(), ngr);
2344  return nullptr;
2345  }
2346 
2347  auto gfinal = new TGraph;
2348  gfinal->SetName("new_graph");
2349 
2350  TGraph* gr;
2351  Int_t npoints = ((TGraph*)lgr->At(0))->GetN();
2352 
2353  std::vector<Double_t> par(ngr);
2354  Double_t xx;
2355  for (Int_t ii = 0; ii < npoints; ii++) {
2356  for (Int_t jj = 0; jj < ngr; jj += 1) {
2357  gr = (TGraph*)lgr->At(jj);
2358  gr->GetPoint(ii, xx, par[jj]);
2359  }
2360  f1.SetParameters(par.data());
2361 
2362  Double_t result = f1.Eval(xx);
2363  gfinal->SetPoint(ii, xx, result);
2364  }
2365  return gfinal;
2366 }
2367 
2368 
2369 
2375 
2376 std::vector<Double_t> KVHistoManipulator::GetLimits(TGraph* G1)
2377 {
2378  /*
2379  xmin -> limits[0];
2380  ymin -> limits[1];
2381  xmax -> limits[2];
2382  ymax -> limits[3];
2383  */
2384  std::vector<Double_t> limits(4);
2385  Double_t xx, yy;
2386  for (Int_t ii = 0; ii < G1->GetN(); ii += 1) {
2387  G1->GetPoint(ii, xx, yy);
2388  if (ii == 0) {
2389  limits[0] = limits[2] = xx;
2390  limits[1] = limits[3] = yy;
2391  }
2392  else {
2393  if (xx < limits[0]) limits[0] = xx;
2394  if (yy < limits[1]) limits[1] = yy;
2395  if (xx > limits[2]) limits[2] = xx;
2396  if (yy > limits[3]) limits[3] = yy;
2397  }
2398  }
2399 
2400  return limits;
2401 }
2402 
2403 
2404 
2410 
2412 {
2413  /*
2414  xmin -> limits[0];
2415  ymin -> limits[1];
2416  xmax -> limits[2];
2417  ymax -> limits[3];
2418  */
2419  std::vector<Double_t> limits(4);
2420  Double_t xx, yy;
2421  Double_t ex, ey;
2422  for (Int_t ii = 0; ii < G1->GetN(); ii += 1) {
2423  G1->GetPoint(ii, xx, yy);
2424  ex = G1->GetErrorX(ii);
2425  ey = G1->GetErrorY(ii);
2426 
2427  if (ii == 0) {
2428  limits[0] = limits[2] = xx;
2429  limits[1] = limits[3] = yy;
2430  }
2431  else {
2432  if (xx - ex < limits[0]) limits[0] = xx - ex;
2433  if (yy - ey < limits[1]) limits[1] = yy - ey;
2434  if (xx + ex > limits[2]) limits[2] = xx + ex;
2435  if (yy + ey > limits[3]) limits[3] = yy + ey;
2436  }
2437  }
2438 
2439  return limits;
2440 
2441 }
2442 
2443 
2444 
2450 
2451 std::vector<Double_t> KVHistoManipulator::GetLimits(TMultiGraph* mgr)
2452 {
2453 
2454  /*
2455  xmin -> limits[0];
2456  ymin -> limits[1];
2457  xmax -> limits[2];
2458  ymax -> limits[3];
2459  */
2460  std::vector<Double_t> limits, temp;
2461 
2462  TList* lg = mgr->GetListOfGraphs();
2463  TGraph* gr = nullptr;
2464  for (Int_t ii = 0; ii < lg->GetEntries(); ii += 1) {
2465  gr = dynamic_cast<TGraph*>(lg->At(ii));
2466  if (ii == 0) {
2467  limits = GetLimits(gr);
2468  }
2469  else {
2470  temp = GetLimits(gr);
2471  if (temp[0] < limits[0]) limits[0] = temp[0];
2472  if (temp[1] < limits[1]) limits[1] = temp[1];
2473  if (temp[2] > limits[2]) limits[2] = temp[2];
2474  if (temp[3] > limits[3]) limits[3] = temp[3];
2475  }
2476  }
2477 
2478  return limits;
2479 
2480 }
2481 
2482 
2483 
2489 
2490 std::vector<Double_t> KVHistoManipulator::GetLimits(TProfile* G1)
2491 {
2492  /*
2493  xmin -> limits[0];
2494  ymin -> limits[1];
2495  xmax -> limits[2];
2496  ymax -> limits[3];
2497  */
2498  std::vector<Double_t> limits(4);
2499  Double_t xx, yy;
2500  Bool_t first = kTRUE;
2501  for (Int_t ii = 1; ii <= G1->GetNbinsX(); ii += 1) {
2502  Double_t stat = G1->GetBinEntries(ii);
2503  if (stat > 0) {
2504  xx = G1->GetBinCenter(ii);
2505  yy = G1->GetBinContent(ii);
2506  if (first) {
2507  first = kFALSE;
2508  limits[0] = limits[2] = xx;
2509  limits[1] = limits[3] = yy;
2510  }
2511  else {
2512  if (xx < limits[0]) limits[0] = xx;
2513  if (yy < limits[1]) limits[1] = yy;
2514  if (xx > limits[2]) limits[2] = xx;
2515  if (yy > limits[3]) limits[3] = yy;
2516  }
2517  }
2518  }
2519 
2520  return limits;
2521 
2522 }
2523 
2524 
2525 
2531 
2533 {
2534 
2535  /*
2536  xmin -> limits[0];
2537  ymin -> limits[1];
2538  xmax -> limits[2];
2539  ymax -> limits[3];
2540  */
2541  std::vector<Double_t> temp, limits;
2542 
2543  TProfile* gr = nullptr;
2544  for (Int_t ii = 0; ii < mgr->GetEntries(); ii += 1) {
2545  gr = dynamic_cast<TProfile*>(mgr->At(ii));
2546  if (ii == 0) {
2547  limits = GetLimits(gr);
2548  }
2549  else {
2550  temp = GetLimits(gr);
2551  if (temp[0] < limits[0]) limits[0] = temp[0];
2552  if (temp[1] < limits[1]) limits[1] = temp[1];
2553  if (temp[2] > limits[2]) limits[2] = temp[2];
2554  if (temp[3] > limits[3]) limits[3] = temp[3];
2555  }
2556  }
2557 
2558  return limits;
2559 
2560 }
2561 
2562 
2563 
2567 
2569 {
2570 
2571  //Getthe limits of the histogram in the current pad
2572  //and apply them to the others histogram drawn on the others pads
2573 
2574  if (!gPad) return;
2575  TObject* obj = nullptr;
2576  TVirtualPad* tmp = gPad;
2577  TIter nextp(gPad->GetListOfPrimitives());
2578  TH1* h1 = nullptr;
2579  while ((obj = nextp())) {
2580  if (obj->InheritsFrom("TH1")) {
2581  h1 = dynamic_cast<TH1*>(obj);
2582  }
2583  }
2584  if (h1) {
2585  Int_t x1 = h1->GetXaxis()->GetFirst();
2586  Int_t x2 = h1->GetXaxis()->GetLast();
2587  Double_t y1, y2;
2588  Double_t z1, z2;
2589 
2590  if (h1->GetDimension() == 1) { //TH1 ou TProfile
2591  y1 = h1->GetMinimum();
2592  y2 = h1->GetMaximum();
2593  }
2594  else {
2595  y1 = h1->GetYaxis()->GetFirst();
2596  y2 = h1->GetYaxis()->GetLast();
2597  }
2598 
2599  if (h1->GetDimension() == 2) { //TH2 ou TProfile2D
2600  z1 = h1->GetMinimum();
2601  z2 = h1->GetMaximum();
2602  }
2603  else {
2604  z1 = h1->GetZaxis()->GetFirst();
2605  z2 = h1->GetZaxis()->GetLast();
2606  }
2607 
2608  std::cout << x1 << " " << x2 << " - " << y1 << " " << y2 << " - " << z1 << " " << z2 << std::endl;
2609 
2610  Int_t nc = 1;
2611  TCanvas* cc = gPad->GetCanvas();
2612  TVirtualPad* pad = nullptr;
2613  while ((pad = cc->GetPad(nc))) {
2614  if (tmp != pad) {
2615  pad->cd();
2616  if (AlsoLog) {
2617  gPad->SetLogx(tmp->GetLogx());
2618  gPad->SetLogy(tmp->GetLogy());
2619  gPad->SetLogz(tmp->GetLogz());
2620  }
2621  TIter nextq(gPad->GetListOfPrimitives());
2622  TH1* h1 = nullptr;
2623  while ((obj = nextq())) {
2624  if (obj->InheritsFrom("TH1")) {
2625  h1 = dynamic_cast<TH1*>(obj);
2626 
2627  h1->GetXaxis()->SetRange(x1, x2);
2628  if (h1->GetDimension() == 1) {
2629  h1->SetMinimum(y1);
2630  h1->SetMaximum(y2);
2631  }
2632  else {
2633  h1->GetYaxis()->SetRange(y1, y2);
2634  }
2635  if (h1->GetDimension() == 2) {
2636  h1->SetMinimum(z1);
2637  h1->SetMaximum(z2);
2638  }
2639  else {
2640  h1->GetZaxis()->SetRange(y1, y2);
2641  }
2642  }
2643  }
2644  gPad->Update();
2645  }
2646  nc += 1;
2647  }
2648  cc->Paint();
2649  cc->Update();
2650  }
2651  gPad = tmp;
2652 }
2653 
2654 
int Int_t
ROOT::R::TRInterface & r
TObject * clone(const char *newname) const override
bool Bool_t
char Char_t
constexpr Bool_t kFALSE
double Double_t
constexpr Bool_t kTRUE
const char Option_t
kRed
kBlack
kBlue
#define X(type, name)
#define gDirectory
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char mode
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t width
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize fs
Option_t Option_t TPoint TPoint const char y1
char name[80]
float xmin
float ymin
float xmax
float ymax
R__EXTERN TRandom * gRandom
char * Form(const char *fmt,...)
R__EXTERN TStyle * gStyle
#define gPad
Toolkit for various operations on histograms & graphs not provided by ROOT.
TF1 * RescaleX(TH1 *hist1, TH1 *hist2, Int_t degree, Double_t *params, Int_t npoints=-1, const Char_t *direction="C", Double_t xmin=-1, Double_t xmax=-1, Double_t qmin=0.05, Double_t qmax=0.95, Double_t eps=1.e-07)
KVHistoManipulator()
Default constructor.
void DefineMarkerStyle(TAttMarker *ob, TString marker)
TH1 * MakeHistoRescaleX(TH1 *hist1, TH1 *hist2, Int_t degree, Double_t *params, Option_t *opt="", Int_t npoints=-1, const Char_t *direction="C", Double_t xmin=-1, Double_t xmax=-1, Double_t qmin=0.05, Double_t qmax=0.95, Double_t eps=1.e-07)
TH2 * CentreeReduiteX(TH2 *hh, Int_t nx=-1, Double_t xmin=-1., Double_t xmax=-1.)
std::vector< Double_t > GetLimits(TGraph *G1)
TGraph * ComputeNewGraphFrom(TGraph *g0, TGraph *g1, const TString &formula)
TH2 * CentreeReduiteY(TH2 *hh, Int_t ny=-1, Double_t ymin=-1., Double_t ymax=-1.)
void DefineStyle(TObject *ob, TString line, TString marker)
Double_t GetX(TH1 *ob, Double_t val, Double_t eps=1.e-07, Int_t nmax=50, Double_t xmin=-1.0, Double_t xmax=-1.0)
Double_t GetChisquare(TH1 *h1, TF1 *f1, Bool_t norm=kTRUE, Bool_t err=kTRUE, Double_t *para=nullptr)
KVNumberList * Saucisson(TH1 *hh, Int_t ntranches=10)
TGraph * ScaleGraph(const TGraph *hh, TF1 *fx=nullptr, TF1 *fy=nullptr) const
TGraph * LinkGraphs(TGraph *grx, TGraph *gry)
void DefinePattern(TH1 *ob, TString titleX="42 0.08 0.8", TString titleY="42 0.07 1.2", TString labelX="42 0.05 0.005", TString labelY="42 0.05 0.006")
virtual ~KVHistoManipulator(void)
TH2 * RenormaliseHisto(TH2 *hh, Int_t bmin=-1, Int_t bmax=-1, TString axis="X", Double_t valref=1)
Int_t CutStatBin(TH1 *hh, Int_t stat_min=-1, Int_t stat_max=-1)
TGraphErrors * GetMomentEvolution(TH2 *hh, TString momentx, TString momenty, TString axis="Y", Double_t stat_min=0)
void DefineTitle(TH1 *ob, TString xtit, TString ytit)
TGraph * ExtractMeanAndSigmaFromProfile(TProfile *pf, TGraph *&sigma)
void ApplyCurrentLimitsToAllCanvas(Bool_t AlsoLog=kFALSE)
TH1 * CentreeReduite(TH1 *hh, Int_t nx=-1, Int_t ny=-1, Double_t xmin=-1., Double_t xmax=-1., Double_t ymin=-1., Double_t ymax=-1.)
TH1 * ScaleHisto(TH1 *hh, TF1 *fx, TF1 *fy=NULL, Int_t nx=-1, Int_t ny=-1, Double_t xmin=-1., Double_t xmax=-1., Double_t ymin=-1., Double_t ymax=-1., Option_t *norm="")
TGraph * DivideGraphs(TGraph *G1, TGraph *G2)
Double_t GetLikelihood(TH1 *h1, TF1 *f1, Bool_t norm=kTRUE, Double_t *para=nullptr)
KVList * Give_ProjectionList(TH2 *hh, Double_t MinIntegral=-1, TString axis="X")
TGraphErrors * MakeGraphFrom(TProfile *pf, Bool_t Error=kTRUE)
TH1 * CumulatedHisto(TH1 *hh, TString direction="C", Int_t bmin=-1, Int_t bmax=-1, Option_t *norm="surf")
TH1 * GetDerivative(TH1 *hh, Int_t order)
void DefineLineStyle(TAttLine *ob, TString line)
Double_t GetCorrelationFactor(TH2 *hh)
Int_t Apply_TCutG(TH2 *hh, TCutG *cut, TString mode="in")
Extended TList class which owns its objects by default.
Definition: KVList.h:28
Strings used to represent a set of ranges of values.
Definition: KVNumberList.h:85
Bool_t End(void) const
Definition: KVNumberList.h:199
void Begin(void) const
void Add(Int_t)
Add value 'n' to the list.
Int_t Next(void) const
virtual void Add(TObject *obj)
virtual void SetTitleOffset(Float_t offset=1)
virtual void SetLabelSize(Float_t size=0.04)
virtual void SetTitleFont(Style_t font=62)
virtual void SetLabelOffset(Float_t offset=0.005)
virtual void SetLabelFont(Style_t font=62)
virtual void SetTitleSize(Float_t size=0.04)
virtual void SetLineStyle(Style_t lstyle)
virtual void SetLineWidth(Width_t lwidth)
virtual void SetLineColor(Color_t lcolor)
virtual TClass * IsA() const
virtual void SetMarkerColor(Color_t mcolor=1)
virtual void SetMarkerStyle(Style_t mstyle=1)
virtual void SetMarkerSize(Size_t msize=1)
virtual TClass * IsA() const
virtual Int_t FindBin(const char *label)
virtual Double_t GetBinCenter(Int_t bin) const
Double_t GetXmax() const
virtual Double_t GetBinLowEdge(Int_t bin) const
Int_t GetLast() const
Double_t GetXmin() const
Int_t GetNbins() const
virtual void SetRange(Int_t first=0, Int_t last=0)
virtual Double_t GetBinWidth(Int_t bin) const
virtual Double_t GetBinUpEdge(Int_t bin) const
Int_t GetFirst() const
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
static TClass * GetClass(Bool_t load=kTRUE, Bool_t silent=kFALSE)
Bool_t InheritsFrom(const char *cl) const override
virtual Int_t GetEntries() const
virtual Double_t Derivative(Double_t x, Double_t *params=nullptr, Double_t epsilon=0.001) const
virtual Int_t GetNDF() const
virtual Double_t GetParameter(const TString &name) const
TAxis * GetYaxis() const
Double_t GetChisquare() const
virtual void SetRange(Double_t xmin, Double_t xmax)
virtual Int_t GetNpar() const
virtual void SetNpx(Int_t npx=100)
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
virtual void SetParameters(const Double_t *params)
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
TAxis * GetXaxis() const
Double_t GetErrorY(Int_t bin) const override
Double_t GetErrorX(Int_t bin) const override
virtual void SetPointError(Double_t ex, Double_t ey)
virtual Int_t IsInside(Double_t x, Double_t y) const
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Double_t * GetY() const
Int_t GetN() const
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Axis_t xmin=0, Axis_t xmax=0)
Double_t * GetX() const
void SetName(const char *name="") override
TAxis * GetXaxis() const
TAxis * GetYaxis() const
virtual Double_t * GetEY() const
void SetNameTitle(const char *name="", const char *title="") override
virtual Int_t GetPoint(Int_t i, Double_t &x, Double_t &y) const
virtual Double_t GetBinCenter(Int_t bin) const
TAxis * GetZaxis()
void SetTitle(const char *title) override
virtual Int_t GetNbinsY() const
virtual Double_t GetBinError(Int_t bin) const
virtual Double_t GetMean(Int_t axis=1) const
virtual Int_t GetDimension() const
void SetNameTitle(const char *name, const char *title) override
TAxis * GetXaxis()
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
virtual Int_t GetNbinsX() const
virtual void SetMaximum(Double_t maximum=-1111)
virtual void SetBinError(Int_t bin, Double_t error)
TAxis * GetYaxis()
virtual Int_t Fill(const char *name, Double_t w)
virtual void SetMinimum(Double_t minimum=-1111)
Double_t GetRMS(Int_t axis=1) const
virtual void SetBinContent(Int_t bin, Double_t content)
virtual Double_t GetBinLowEdge(Int_t bin) const
void SetName(const char *name) override
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
virtual Double_t Integral(Int_t binx1, Int_t binx2, Option_t *option="") const
virtual Double_t GetBinContent(Int_t bin) const
virtual void SetBins(Int_t nx, const Double_t *xBins)
virtual Double_t GetBinWidth(Int_t bin) const
virtual void Scale(Double_t c1=1, Option_t *option="")
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
TObject * Clone(const char *newname="") const override
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
TH1D * ProjectionY(const char *name="_py", Int_t firstxbin=0, Int_t lastxbin=-1, Option_t *option="") const
void SetBinContent(Int_t bin, Double_t content) override
TH1D * ProjectionX(const char *name="_px", Int_t firstybin=0, Int_t lastybin=-1, Option_t *option="") const
virtual Double_t GetBinContent(Int_t bin) const
TObject * At(Int_t idx) const override
void InitWithPrototype(const char *function, const char *proto, ROOT::EFunctionMatchMode mode=ROOT::kConversionMatch)
Bool_t IsValid() const
void Execute()
TList * GetListOfGraphs() const
virtual void SetTitle(const char *title="")
const char * GetName() const override
const char * GetTitle() const override
virtual void SetName(const char *name)
Int_t GetEntries() const override
TObject * At(Int_t idx) const override
virtual const char * ClassName() const
virtual TObject * DrawClone(Option_t *option="") const
R__ALWAYS_INLINE Bool_t IsZombie() const
virtual Bool_t InheritsFrom(const char *classname) const
Double_t GetBinContent(Int_t bin) const override
virtual void SetBinEntries(Int_t bin, Double_t w)
virtual Double_t GetBinEntries(Int_t bin) const
Double_t GetBinError(Int_t bin) const override
virtual Double_t Uniform(Double_t x1, Double_t x2)
virtual TObject * At(Int_t idx) const=0
Double_t Eval(Double_t x) const override
const char * Data() const
void ToUpper()
TObjArray * Tokenize(const TString &delim) const
Bool_t IsNull() const
void Form(const char *fmt,...)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
void SetOptStat(Int_t stat=1)
virtual Int_t GetLogz() const=0
virtual TVirtualPad * cd(Int_t subpadnumber=0)=0
virtual Int_t GetLogy() const=0
virtual Int_t GetLogx() const=0
TLine * line
Expr< UnaryOp< Sqrt< T >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > sqrt(const SMatrix< T, D, D2, R > &rhs)
Expr< UnaryOp< Fabs< T >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > fabs(const SMatrix< T, D, D2, R > &rhs)
RVec< PromoteType< T > > abs(const RVec< T > &v)
RVec< PromoteTypes< T0, T1 > > pow(const T0 &x, const RVec< T1 > &v)
const Double_t sigma
Double_t ey[n]
const Int_t n
TGraphErrors * gr
Double_t ex[n]
TH1F * h1
TF1 * f1
TH1 * h
void Error(const char *location, const char *fmt,...)
void Info(const char *location, const char *fmt,...)
void Warning(const char *location, const char *fmt,...)
void init()
Double_t Power(Double_t x, Double_t y)
Double_t Log(Double_t x)
Double_t Sqrt(Double_t x)
Double_t Abs(Double_t d)
Double_t Max(Double_t a, Double_t b)
ClassImp(TPyArg)