Processing math: 100%
KaliVeda
Toolkit for HIC analysis
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Modules Pages
KVImpactParameters Namespace Reference

Classes

class  algebraic_fitting_function
 Algebraic relationship between mean value of observable and centrality. More...
 
class  bayesian_estimator
 Impact parameter distribution reconstruction from experimental data. More...
 
class  BD_kernel
 Fluctuation kernel using binomial distribution for use with bayesian_estimator. More...
 
class  cavata_prescription
 Impact parameter estimation neglecting using sharp cut-off approximation. More...
 
class  gamma_kernel
 Fluctuation kernel using gamma distribution for use with bayesian_estimator. More...
 
class  impact_parameter_distribution
 Class implementing parametrizable impact parameter distributions. More...
 
class  NBD_kernel
 Fluctuation kernel using negative binomial distribution for use with bayesian_estimator. More...
 
class  participant_spectator_model
 Formulae for participant-spectator model. More...
 
class  rogly_fitting_function
 Exponential function relating mean value of observable to centrality. More...
 

Functions

double ana_centrality (double *x, double *par)
 
Double_t sigma_inel (Double_t *x, Double_t *p)
 
Double_t smooth_pb (Double_t *x, Double_t *par)
 

Detailed Description

Created by KVClassFactory on Fri Jul 26 16:03:15 2019 Author: John Frankland,,,

Created by KVClassFactory on Fri Jan 15 18:14:06 2010 Author: John Frankland,,,

Created by KVClassFactory on Tue Jul 23 15:24:27 2019 Author: John Frankland,,,

Function Documentation

◆ ana_centrality()

double KVImpactParameters::ana_centrality ( double *  x,
double *  par 
)

Centrality c_b as a function of impact parameter b

Parameters
[in]x[0]b
[in]par[0]b_0
[in]par[1]\Delta b
Returns
c_{b}=\frac{2\pi(\Delta b)^{2}}{\sigma_{R}}\left[\mathrm{-Li}_{2}\left(-\exp\left(\frac{b_{0}}{\Delta b}\right)\right)-\frac{\pi^{2}}{6}+\frac{(b^{2}-b_{0}^{2})}{2(\Delta b)^{2}}-\frac{b}{\Delta b}\ln\left(1+\exp\left((b-b_{0})/\Delta b\right)\right)-\mathrm{Li}_{2}\left(-\mathrm{e}^{(b-b_{0})/\Delta b}\right)\right]

Definition at line 65 of file impact_parameter_distribution.cpp.

◆ sigma_inel()

Double_t KVImpactParameters::sigma_inel ( Double_t x,
Double_t p 
)

Total reaction cross-section in [mb] as a function of b_0 and \Delta b

Parameters
[in]x[0]b_0
[in]par[0]\Delta b
Returns
\sigma_{R}=-2\pi(\Delta b)^{2}\mathrm{Li}_{2}\left(-\exp\left(\frac{b_{0}}{\Delta b}\right)\right)

Definition at line 45 of file impact_parameter_distribution.cpp.

◆ smooth_pb()

Double_t KVImpactParameters::smooth_pb ( Double_t x,
Double_t par 
)

Smooth impact parameter distribution (with arbitrary normalisation par[0])

Parameters
[in]x[0]b
[in]par[0]normalisation parameter A
[in]par[1]b0
[in]par[2]\Delta b
Returns
Ab\left[1+\exp\left(\frac{b-b_{0}}{\Delta b}\right)\right]^{-1}

Definition at line 23 of file impact_parameter_distribution.cpp.