KaliVeda
Toolkit for HIC analysis
KVIDTelescope.cpp
1 /***************************************************************************
2 $Id: KVIDTelescope.cpp,v 1.52 2009/05/05 15:54:04 franklan Exp $
3 Author : $Author: franklan $
4  KVIDTelescope.cpp - description
5  -------------------
6  begin : Wed Jun 18 2003
7  copyright : (C) 2003 by J.D Frankland
8  email : frankland@ganil.fr
9  ***************************************************************************/
10 
11 /***************************************************************************
12  * *
13  * This program is free software; you can redistribute it and/or modify *
14  * it under the terms of the GNU General Public License as published by *
15  * the Free Software Foundation; either version 2 of the License, or *
16  * (at your option) any later version. *
17  * *
18  ***************************************************************************/
19 #include "TROOT.h"
20 #include "KVIDTelescope.h"
21 #include "KVTelescope.h"
22 #include "KVGroup.h"
23 #include "KVNucleus.h"
24 #include "KVReconstructedNucleus.h"
25 #include "KVIDGraph.h"
26 #include "KVIDGrid.h"
27 #include "Riostream.h"
28 #include "TPluginManager.h"
29 #include "KVMultiDetArray.h"
30 #include "KVDataSet.h"
31 #include "KVIDGridManager.h"
32 #include "KVIDZALine.h"
33 #include "KVIDCutLine.h"
34 #include "KVIdentificationResult.h"
35 #include "TMath.h"
36 #include "TClass.h"
37 #include "TH2.h"
38 #include "KVParticleCondition.h"
39 
40 #include <KVDetectorSignalExpression.h>
41 #include <KVIDZAGrid.h>
42 
43 using namespace std;
44 
47 
48 
50 
52  : fGroup(nullptr)
53 {
54  init();
55 }
56 
57 
58 
61 
63 {
64  //default init
67 }
68 
69 
70 
102 
104 {
105  // Default initialisation for ID telescopes.
106  // If telescope has at least 1 grid then it is ready to identify
107  // particles after initialising the grid(s) (kReadyForID=true);
108  // otherwise kReadyForID is set to kFALSE, unless the current dataset (if defined)
109  // has been declared to have no associated identification/calibration parameters,
110  // in which case kReadyForID is by default set to kTRUE (for filtering simulations).
111  //
112  // In order to enable mass identification for certain telescopes without a dedicated
113  // implementation (e.g. for simulating array response), put the following lines
114  // in your .kvrootrc:
115  //
116  // [dataset].[telescope label].MassID: yes
117  //
118  // If you want to limit mass identification to certain values of Z and/or A,
119  // add the following line:
120  //
121  // [dataset].[telescope label].MassID.Validity: [expression]
122  //
123  // where [expression] is some valid C++ boolean expression involving Z and/or A,
124  // for example
125  //
126  // [dataset].[telescope label].MassID.Validity: (Z>3)&&(A<20)
127  //
128  //For identifications using more than one grid, the default behaviour is to try identification
129  //with each grid in turn until a successful identification is obtained. The order in which
130  //the grids should be tried should be specified by a variable with the following format:
131  //
132  //~~~~~~~~~~~~~~~~
133  //[Dataset].[telescope label].GridOrder: [Grid1],[Grid2],...
134  //~~~~~~~~~~~~~~~~
135 
137 
138  // for datasets with no calib/ident infos, all id telescopes work
139  if (gDataSet && !gDataSet->HasCalibIdentInfos()) {
141  }
142  else { // for datasets with calib/ident infos, we need a grid & all detectors working
143  // looping over detectors to check they are working
144  // if one of them is not -> set kReadyForID to false
145  TIter it(GetDetectors());
146  KVDetector* det = 0;
147  while ((det = (KVDetector*)it())) if (!det->IsOK()) {
149  return;
150  }
151 
152  if (GetIDGrid()) {
153  KVIDGraph* gr;
154  TIter it(GetListOfIDGrids());
155  bool ok = kTRUE;
156  KVUniqueNameList tmp_list;// for re-ordering grids
157  bool mass_id = false;
158  while ((gr = (KVIDGraph*)it())) {
159  tmp_list.Add(gr);
160  if (gr->HasMassIDCapability()) mass_id = true;
161  gr->Initialize();
162  // make sure both x & y axes' signals are well set up
163  if (!fGraphCoords[gr].fVarX || !fGraphCoords[gr].fVarY) {
164  ok = kFALSE;
165  Warning("Initialize",
166  "ID tel. %s: grid %s has undefined VarX(%s:%p) or VarY(%s:%p) - WILL NOT USE",
167  GetName(), gr->GetName(), gr->GetVarX(), fGraphCoords[gr].fVarX, gr->GetVarY(), fGraphCoords[gr].fVarY);
168  }
169  }
170  // set to true if at least one grid can provide mass identification
171  SetHasMassID(mass_id);
172  // if more than one grid, need to re-order them according to [Dataset].[telescope label].GridOrder
173  if (GetListOfIDGrids()->GetEntries() > 1 && gDataSet) {
174  KVString grid_list = gDataSet->GetDataSetEnv(Form("%s.GridOrder", GetLabel()));
175  ok = kFALSE;
176  if (grid_list == "")
177  Warning("Initialize", "ID telescope %s has %d grids but no %s variable defined",
178  GetName(), GetListOfIDGrids()->GetEntries(), Form("%s.GridOrder", GetLabel()));
179  else if (grid_list.GetNValues(",") != GetListOfIDGrids()->GetEntries())
180  Warning("Initialize", "ID telescope %s has %d grids but %d grids appear in variable %s",
181  GetName(), GetListOfIDGrids()->GetEntries(), grid_list.GetNValues(","), Form("%s.GridOrder", GetLabel()));
182  else {
183  fIDGrids.Clear();
184  grid_list.Begin(",");
185  while (!grid_list.End()) {
186  auto gr_name = grid_list.Next();
187  auto gr_ob = tmp_list.FindObject(gr_name);
188  if (!gr_ob) {
189  Info("Initialize", "IDtel=%s grid %s missing", GetName(), gr_name.Data());
190  }
191  else {
192  fIDGrids.Add(gr_ob);
193  }
194  }
195  ok = kTRUE;
196  }
197  }
198  if (ok) SetBit(kReadyForID);
199  }
200  }
201 
202  if (gDataSet) {
203  SetHasMassID(gDataSet->GetDataSetEnv(Form("%s.MassID", GetLabel()), kFALSE));
204  KVString valid;
205  if ((valid = gDataSet->GetDataSetEnv(Form("%s.MassID.Validity", GetLabel()), "")) != "") {
206  valid.ReplaceAll("Z", "_NUC_->GetZ()");
207  valid.ReplaceAll("A", "_NUC_->GetA()");
208  fMassIDValidity.reset(new KVParticleCondition(valid));
209  }
210  }
211 }
212 
213 
214 
223 
225 {
226  // Add a detector to the telescope.
227  //
228  // Detectors must be added in the order they will be hit by impinging particles,
229  // with the last detector being the one particles stopped in the telescope will stop in.
230  // i.e. dE1, dE2, ..., Eres
231  //
232  // Update name of telescope to "ID_[name of 1st detector]_[name of 2nd detector]_ ... _[name of last detector]"
233 
234  if (d) {
235  fDetectors.Add(d);
236  if (GetSize() > 1) {
237  TString old_name = GetName();
238  old_name += Form("_%s", GetDetectors()->Last()->GetName());
239  SetName(old_name);
240  }
241  else SetName(Form("ID_%s", GetDetector(1)->GetName()));
242  //d->AddIDTelescope(this); <= caused multiple copies to exist in detector's list
243  }
244  else {
245  Warning("AddDetector", "Called with null pointer");
246  }
247 }
248 
249 
250 
254 
256 {
257  // print out telescope structure
258  //if opt="fired" only fired detectors are printed
259 
260  TIter next(GetDetectors());
261  KVDetector* obj;
262 
263  if (!strcmp(opt, "fired")) {
264  while ((obj = (KVDetector*) next())) {
265 
266  if (obj->Fired() || obj->GetEnergy())
267  obj->Print("data");
268  }
269  }
270  else {
271  cout << "\n" << opt << "Structure of KVIDTelescope object: " <<
272  GetName() << " " << GetType() << endl;
273  cout << opt <<
274  "--------------------------------------------------------" <<
275  endl;
276  while ((obj = (KVDetector*) next())) {
277  cout << opt << "Detector: " << obj->GetName() << endl;
278  }
279  }
280 }
281 
282 
283 
284 
287 
289 {
290  // Return a pointer to the detector in the telescope with the name "name".
291 
293  if (!tmp)
294  Warning("GetDetector(const Char_t *name)",
295  "Detector %s not found in telescope %s", name, GetName());
296  return tmp;
297 }
298 
299 
300 
301 
303 
305 {
306  return fGroup;
307 }
308 
309 
310 
311 
313 
315 {
316  fGroup = kvg;
317 }
318 
319 
320 
322 
324 {
325  return (GetGroup() ? GetGroup()->GetNumber() : 0);
326 }
327 
328 
329 
330 
339 
341  Double_t Emax, Double_t Estep)
342 {
343  //For a given nucleus, generate a TGraph representing the line in the deltaE-E
344  //plane of the telescope which can be associated with nuclei of this (A,Z) with total
345  //incident energies between the two limits.
346  //NOTE: if there are other absorbers/detectors placed before this telescope,
347  //the energy losses of the particle in these will be taken into account.
348  //If the step in energy is not given, it is taken equal to 100 equal steps between min and max.
349  //The TGraph should be deleted by the user after use.
350 
351 
352  if (!Estep)
353  Estep = (Emax - Emin) / 100.;
354 
355  Int_t nsteps = 1 + (Int_t)((Emax - Emin) / Estep);
356 
357  if (nsteps < 1)
358  return 0;
359 
360  Double_t* y = new Double_t[nsteps];
361  Double_t* x = new Double_t[nsteps];
362  Int_t step = 0;
363 
364  //get list of all detectors through which particle must pass in order to reach
365  //2nd member of ID Telescope
366  TList* detectors =
368  //detectors->ls();
369  TIter next_det(detectors);
370  //cout << "nsteps =" << nsteps << endl;
371 
372  for (Double_t E = Emin; E <= Emax; E += Estep) {
373  //Set energy of nucleus
374  nuc->SetEnergy(E);
375  //cout << "Einc=" << E << endl;
376 
377  //Calculate energy loss in each member and stock in arrays x & y
378  //first member
379  KVDetector* det = 0;
380  x[step] = y[step] = -1;
381  while ((det = (KVDetector*) next_det())) {
382  //det->Print();
383  Double_t eloss = det->GetELostByParticle(nuc);
384  if (det == GetDetector(1))
385  y[step] = eloss;
386  else if (det == GetDetector(2))
387  x[step] = eloss;
388  Double_t E1 = nuc->GetEnergy() - eloss;
389  nuc->SetEnergy(E1);
390  //cout << "Eloss=" << eloss << endl;
391  //cout << "Enuc=" << nuc->GetEnergy() << endl;
392  if (E1 < 1.e-3) break;
393  }
394 
395  //cout << "step = " << step << " x = " << x[step] << " y = " << y[step] << endl;
396 
397  //make sure that some energy is lost in each member
398  //otherwise miss a step and reduce number of points in graph
399  if (x[step] > 0 && y[step] > 0) {
400  step++;
401  }
402  else {
403  nsteps--;
404  }
405 
406  //cout << "nsteps =" << nsteps << endl;
407  //reset iterator ready for next loop on detectors
408  next_det.Reset();
409  }
410  TGraph* tmp = 0;
411  if (nsteps > 1)
412  tmp = new TGraph(nsteps, x, y);
413  delete[]x;
414  delete[]y;
415  return tmp;
416 }
417 
418 
419 
420 
443 
445 {
446  //Default identification method.
447  //
448  //Works for ID telescopes for which one or more identification grids are defined, each
449  //with VARX/VARY parameters corresponding to a KVDetectorSignal or KVDetectorSignalExpression
450  //associated with one or other of the detectors constituting the telescope.
451  //
452  //For identifications using more than one grid, the default behaviour is to try identification
453  //with each grid in turn until a successful identification is obtained. The order in which
454  //the grids should be tried should be specified by a variable with the following format:
455  //
456  //~~~~~~~~~~~~~~~~
457  //[Dataset].[Array Name].[ID type].GridOrder: [Grid1],[Grid2],...
458  //~~~~~~~~~~~~~~~~
459  //
460  //where the name of each grid is given as "VARY_VARX". If no variable defining the order is found,
461  //the grids will be tried in the order they were found in the file containing the grids for this
462  //telescope.
463  //
464  // The KVIdentificationResult is first Clear()ed; then it is filled with IDtype = GetType()
465  // of this identification telescope, IDattempted = true, and the results of the identification
466  // procedure.
467 
468  idr->Clear();
469  idr->IDattempted = true;
470  idr->SetIDType(GetType());
471 
472  KVIDGraph* grid;
473  TIter it(GetListOfIDGrids());
474  while ((grid = (KVIDGraph*)it())) { //loop over grids in order given by [Dataset].[Array Name].[ID type].GridOrder:
475  Double_t de, e;
476  GetIDGridCoords(e, de, grid, x, y);
477  idr->SetGridName(grid->GetName());
478  if (grid->IsIdentifiable(e, de, &idr->Rejecting_Cut)) {
479  grid->Identify(e, de, idr);
480  if (idr->IDOK) break; // stop on first successful identification
481  }
482  else {
483  // particle rejected by cut in grid. idr->Rejecting_Cut contains its name.
484  idr->IDOK = kFALSE;
486  }
487  }
488  idr->IDcode = GetIDCode();
489 
490  return kTRUE;
491 }
492 
493 
494 
495 
531 
533 {
534  // Add an identification grid to the list of grids used by this telescope.
535  //
536  // If the grid's VARX and VARY parameters are set and contain the names of valid
537  // detector signals (see formatting rules below) they will be used by
538  // GetIDGridXCoord() and GetIDGridYCoord() to return the coordinates
539  // needed to perform particle identification using the grid.
540  //
541  // The name of the grid is set to "VARY_VARX" (just the signal names, not the detector
542  // label part - see below). This value will be stored in the
543  // KVIdentificationResult corresponding to an attempted identification of a
544  // KVReconstructedNucleus by this grid.
545  //
546  // VARX/VARY Formatting
547  //
548  // To be valid, grid VARX/Y parameters should be set as follows:
549  //
550  //~~~~~~~~~~~~~~~~~~
551  // [signal name]
552  // or [det_label]::[signal name]
553  //~~~~~~~~~~~~~~~~~~
554  //
555  // where
556  //
557  //~~~~~~~~~~~~~~~~~~
558  // [det_label] (optional) = detector label i.e. string returned by KVDetector::GetLabel()
559  // method for detector. By default, VARX is assumed to be the Eres detector
560  // or last detector and VARY the DE detector or first detector
561  // [signal_name] = name of a signal defined for the detector, possibly depending
562  // on availability of calibration
563  //
564  // To see all available signals for a detector, use
565  //
566  // KVDetector::GetListOfDetectorSignals()
567  //~~~~~~~~~~~~~~~~~~
568 
569  if (grid) {
570  fIDGrids.Add(grid);
571  KVString det_labels_x, det_labels_y;
572  KVDetectorSignal* xx = GetSignalFromGridVar(grid->GetVarX(), "X", det_labels_x);
573  KVDetectorSignal* yy = GetSignalFromGridVar(grid->GetVarY(), "Y", det_labels_y);
574  GraphCoords gc;
575  gc.fVarX = xx;
576  gc.fDetLabelsX = det_labels_x;
577  gc.fVarY = yy;
578  gc.fDetLabelsY = det_labels_y;
579  fGraphCoords[grid] = gc;
580  TString grid_name;
581  if (xx && yy) {
582  grid_name.Form("%s_%s", yy->GetName(), xx->GetName());
583  grid->SetName(grid_name);
584  }
585  }
586 }
587 
588 
589 
635 
637 {
638  // Deduce & return pointer to detector signal from grid VARX/VARY parameter
639  //
640  // To be valid, grid VARX/Y parameters should be set using mathematical expressions
641  // which use the following references to detector signals for the telescope:
642  //
643  //~~~~~~~~~~~~~~~~~~
644  // [signal name]
645  // OR [det_label]::[signal name]
646  //~~~~~~~~~~~~~~~~~~
647  //
648  // where
649  //
650  //~~~~~~~~~~~~~~~~~~
651  // [signal_name] = name of a signal defined for 1 of the detectors of the telescope
652  // [det_label] = optional detector label i.e. string returned by
653  // KVDetector::GetLabel() method for detector
654  //~~~~~~~~~~~~~~~~~~
655  //
656  // If `[det_label]` is not given, we assume for `VARX` the last (E) detector,
657  // while for `VARY` we assume the first (dE) detector. If this telescope has only
658  // one detector, we use it for both variables.
659  //
660  // To see all available signals for a detector, use
661  //
662  //~~~~~~~~~~~~~~~~~~
663  // KVDetector::GetListOfDetectorSignals()
664  //~~~~~~~~~~~~~~~~~~
665  //
666  // #### Example ####
667  // Imagine a telescope which combines 2 detectors, with labels SI and CSI (in that order, i.e. SI is the dE detector,
668  // CSI is the residual energy detector). The following cases are valid:
669  //
670  //~~~~~
671  // VARX = Energy : use 'Energy' signal of CSI detector (default for VARX)
672  // VARY = ADC : use 'ADC' signal of SI detector (default for VARY)
673  // VARY = CSI::Energy : use 'Energy' signal of CSI detector (overrides default for VARY, SI)
674  // VARX = (Q3-Q3Fast)/(0.8*Q3) : uses 'Q3' and 'Q3Fast' signals of CSI detector (default for VARX)
675  // VARY = 1.5*SI::ADC - CSI::Q3Fast/CSI::Q3 : combination of signals from both detectors
676  //~~~~~
677  //
678  // The 'det_labels' string will be filled with a comma-separated list of the labels of each detector used
679  // in the expressions.
680  //
681  // \note if any signals are not defined, they will be evaluated as zero
682 
683  if (var == "") {
684  Warning("GetSignalFromGridVar",
685  "No VAR%s defined for grid for telescope %s. KVIDTelescope-derived class handling identification must override GetIDMapX/GetIDMapY",
686  axe.Data(), GetName());
687  return nullptr;
688  }
689 
690  KVString dum = var;
691  KVDetector* det = nullptr;
692  KVDetectorSignal* ds(nullptr);
693  KVString sig_type;
694 
695  // check if VARX/Y is a mathematical expression
696  Bool_t is_expression = var.GetNValues("+-*/()") > 1;
697  // examine each term in expression (this will split the elements in a mathematical expression,
698  // or just take the whole expression if no math operators are present)
699  var.Begin("+-*/()");
700  bool explicit_det_ref = false;
701  bool multidetexpr = false;
702  KVString det_label;
703  while (!var.End()) {
704  KVString t = var.Next();
705  // check if we have an explicit reference to a detector
706  if (t.Contains("::")) {
707  t.Begin("::");
708  det_label = t.Next();
709  auto _det = (KVDetector*)GetDetectors()->FindObjectByLabel(det_label);
710  if (_det) {
711  explicit_det_ref = true;
712  sig_type = t.Next();
713  // check signal is defined for detector
714  if (_det->GetDetectorSignal(sig_type)) {
715  if (det_labels.Length()) {
716  if (!det_labels.Contains(det_label)) det_labels += Form(",%s", det_label.Data());
717  }
718  else
719  det_labels = det_label;
720  }
721  else {
722  Warning("GetSignalFromGridVar", "signal '%s' not found in det '%s' -> replaced by '0'", sig_type.Data(), _det->GetName());
723  dum.ReplaceAll(Form("%s::%s", _det->GetLabel(), sig_type.Data()), "0");
724  }
725  }
726  if (det && (_det != det)) multidetexpr = true; // more than 1 detector is referenced
727  det = _det;
728  }
729  }
730  // treat all cases with explicit detector references
731  if (explicit_det_ref) {
732  if (!multidetexpr) {
733  // only 1 detector is directly referenced
734  if (!is_expression) {
735  // it is not a mathematical expression: this is just the name of a detector signal
736  return det->GetDetectorSignal(sig_type);
737  }
738  else {
739  // math expression with explicit reference to signal(s) of 1 detector
740  sig_type = var;
741  // remove all explicit references to detector: 'det' pointer has been set
742  sig_type.ReplaceAll(Form("%s::", det_label.Data()), "");
743  // expression will be handled below
744  }
745  }
746  else {
747  // use specific constructor for explicit detector references
748  ds = new KVDetectorSignalExpression(var, dum, GetDetectors());
749  if (!ds->IsValid()) {
750  delete ds;
751  ds = nullptr;
752  Error("GetSignalFromGridVar",
753  "Problem initialising ID-grid %s coordinate for telescope %s."
754  " Check definition of VAR%s for grid (=%s)",
755  axe.Data(), GetName(), axe.Data(), var.Data());
756  return ds;
757  }
759  return ds;
760  }
761  }
762  else {
763  // no explicit reference to detectors - by default, use detector (1) for Y axis,
764  // and the last detector for X axis
765  if (axe == "Y" || GetSize() == 1) det = GetDetector(1);
766  else det = GetDetector(GetSize());
767  sig_type = var;
768  det_labels = det->GetLabel();
769  }
770  ds = det->GetDetectorSignal(sig_type);
771  if (!ds) {
772  // sig_type is not the name of a known signal: assume it is an expression using known signal names
773  if (!det->AddDetectorSignalExpression(sig_type, sig_type)) {
774  Error("GetSignalFromGridVar",
775  "Problem initialising ID-grid %s coordinate for telescope %s. Request for unknown signal %s for detector %s. Check definition of VAR%s for grid (=%s)",
776  axe.Data(), GetName(), sig_type.Data(), det->GetName(), axe.Data(), var.Data());
777  ds = nullptr;
778  }
779  else
780  ds = det->GetDetectorSignal(sig_type);
781  }
782  return ds;
783 }
784 
785 
786 
788 
790 {
792  if (!cl || !cl->InheritsFrom("KVIDZAGrid")) cl = TClass::GetClass("KVIDZAGrid");
793  KVIDGrid* idgrid = (KVIDGrid*)cl->New();
794 
795  idgrid->AddIDTelescope(this);
796  idgrid->SetOnlyZId(onlyZ);
797  idgrid->SetRunList("1-10000");
798 
799  KVIDCutLine* B_line = (KVIDCutLine*)idgrid->Add("OK", "KVIDCutLine");
800  Int_t npoi_bragg = 0;
801  B_line->SetName("Bragg_line");
802  B_line->SetAcceptedDirection("right");
803 
804  return idgrid;
805 }
806 
807 
808 
816 
817 void KVIDTelescope::addLineToGrid(KVIDGrid* idgrid, int zz, int aa, int npoints)
818 {
819 
820  //loop over energy
821  //first find :
822  // ****E1 = energy at which particle passes 1st detector and starts to enter in the 2nd one****
823  // E2 = energy at which particle passes the 2nd detector
824  //then perform npoints calculations between these two energies and use these
825  //to construct a KVIDZALine
826 
827  double xfactor = 1.;
828 
829  KVNucleus part;
830 
831  KVDetector* det_de = GetDetector(1);
832  KVDetector* det_eres = GetDetector(2);
833 
834  Double_t SeuilE = 0.1;
835 
836  part.SetZ(zz);
837  part.SetA(aa);
838 
839  Double_t E1, E2;
840  //find E1
841  //go from SeuilE MeV to det_de->GetEIncOfMaxDeltaE(part.GetZ(),part.GetA()))
842  Double_t E1min = SeuilE, E1max = det_de->GetEIncOfMaxDeltaE(zz, aa);
843  E1 = (E1min + E1max) / 2.;
844 
845  while ((E1max - E1min) > SeuilE) {
846 
847  part.SetEnergy(E1);
848  det_de->Clear();
849  det_eres->Clear();
850 
851  det_de->DetectParticle(&part);
852  det_eres->DetectParticle(&part);
853  if (det_eres->GetEnergy() > SeuilE) {
854  //particle got through - decrease energy
855  E1max = E1;
856  E1 = (E1max + E1min) / 2.;
857  }
858  else {
859  //particle stopped - increase energy
860  E1min = E1;
861  E1 = (E1max + E1min) / 2.;
862  }
863  }
864 
865  //add point to Bragg line
866  Double_t dE_B = det_de->GetMaxDeltaE(zz, aa);
867  Double_t E_B = det_de->GetEIncOfMaxDeltaE(zz, aa);
868  Double_t Eres_B = det_de->GetERes(zz, aa, E_B);
869 
870  KVIDCutLine* B_line = (KVIDCutLine*)idgrid->GetCut("Bragg_line");
871  if (B_line) B_line->SetPoint(B_line->GetN(), Eres_B, dE_B);
872 
873  //find E2
874  //go from E1 MeV to maximum value where the energy loss formula is valid
875  Double_t E2min = E1, E2max = det_eres->GetEmaxValid(part.GetZ(), part.GetA());
876  E2 = (E2min + E2max) / 2.;
877 
878  while ((E2max - E2min > SeuilE)) {
879 
880  part.SetEnergy(E2);
881  det_de->Clear();
882  det_eres->Clear();
883 
884  det_de->DetectParticle(&part);
885  det_eres->DetectParticle(&part);
886  if (part.GetEnergy() > SeuilE) {
887  //particle got through - decrease energy
888  E2max = E2;
889  E2 = (E2max + E2min) / 2.;
890  }
891  else {
892  //particle stopped - increase energy
893  E2min = E2;
894  E2 = (E2max + E2min) / 2.;
895  }
896  }
897  E2 *= xfactor;
898  if ((!strcmp(det_eres->GetType(), "CSI")) && (E2 > 5000)) E2 = 5000;
899  // printf("z=%d a=%d E1=%lf E2=%lf\n",zz,aa,E1,E2);
900  KVIDZALine* line = (KVIDZALine*)idgrid->Add("ID", "KVIDZALine");
901  if (TMath::Even(zz)) line->SetLineColor(4);
902  line->SetZ(zz);
903  line->SetA(aa);
904 
905  Double_t logE1 = TMath::Log(E1);
906  Double_t logE2 = TMath::Log(E2);
907  Double_t dLog = (logE2 - logE1) / (npoints - 1.);
908 
909  for (Int_t i = 0; i < npoints; i++) {
910  // Double_t E = E1 + i*(E2-E1)/(npoints-1.);
911  Double_t E = TMath::Exp(logE1 + i * dLog);
912 
913  Double_t Eres = 0.;
914  Int_t niter = 0;
915  while (Eres < SeuilE && niter <= 20) {
916  det_de->Clear();
917  det_eres->Clear();
918 
919  part.SetEnergy(E);
920 
921  det_de->DetectParticle(&part);
922  det_eres->DetectParticle(&part);
923 
924  Eres = det_eres->GetEnergy();
925  E += SeuilE;
926  niter += 1;
927  }
928  if (!(niter > 20)) {
929  Double_t dE = det_de->GetEnergy();
930  Double_t gEres, gdE;
931  line->GetPoint(i - 1, gEres, gdE);
932  line->SetPoint(i, Eres, dE);
933 
934  }
935  }
936  //printf("sort de boucle points");
937 
938 
939 }
940 
941 
942 
951 
953 {
954  // Returns a comma-separated list of the labels of the detectors used to determine
955  // the "x" or "y" coordinates of the identification grid(s)
956  //
957  // If there is more than 1 grid and the list is not the same for all grids,
958  // prints a warning message.
959  //
960  // \param[in] axis name of grid axis i.e. "x", "X", "y" or "Y" (case insensitive)
961 
962  KVString _axis = axis;
963  _axis.ToUpper();
964 
965  if (_axis != "X" && _axis != "Y") {
966  Error("GetDetectorLabelsForGridCoord", "Called with illegal axis name '%s'", axis.Data());
967  return "";
968  }
969  KVString lab_list;
970 
971  for (auto& __gc : fGraphCoords) {
972  KVString labs;
973  if (_axis == "X") labs = __gc.second.fDetLabelsX;
974  else labs = __gc.second.fDetLabelsY;
975  if (lab_list.Length() && lab_list != labs) {
976  Error("GetDetectorLabelsForGridCoord", "Grids for telescope %s use different detector types for %s-coordinate: "
977  "%s and %s", GetName(), _axis.Data(), lab_list.Data(), labs.Data());
978  return "";
979  }
980  lab_list = labs;
981  }
982  return lab_list;
983 }
984 
985 
986 
987 
991 
993 {
994  //Return the first in the list of identification grids used by this telescope
995  //(this is for backwards compatibility with ID telescopes which had only one grid).
996  return (KVIDGraph*)GetListOfIDGrids()->First();
997 }
998 
999 
1000 
1001 
1004 
1006 {
1007  //Return pointer to grid using position in list. First grid has index = 1.
1008  if (index < 1) {
1009  Error("GetIDGrid(int)", "Index must be >=1!");
1010  return nullptr;
1011  }
1012  return (KVIDGraph*)GetListOfIDGrids()->At(index - 1);
1013 }
1014 
1015 
1016 
1017 
1021 
1023 {
1024  //Return pointer to grid using "label" to search in list of grids associated
1025  //to this telescope.
1026  return (KVIDGraph*)GetListOfIDGrids()->FindObjectByLabel(label);
1027 }
1028 
1029 
1030 
1031 
1033 
1035 {
1036  AbstractMethod("GetIDMapX");
1037  return -1.;
1038 }
1039 
1040 
1041 
1046 
1048 {
1049  // Returns the pedestal associated with the 2nd detector of the telescope,
1050  // optionally depending on the given option string.
1051  // By default this returns 0, and should be overridden in specific implementations.
1052 
1053  return 0.;
1054 }
1055 
1056 
1057 
1062 
1064 {
1065  // Returns the pedestal associated with the 1st detector of the telescope,
1066  // optionally depending on the given option string.
1067  // By default this returns 0, and should be overridden in specific implementations.
1068 
1069  return 0.;
1070 }
1071 
1072 
1073 
1077 
1079 {
1080  // Return value of X coordinate to be used with the given ID grid
1081  // This corresponds to whatever was given as parameter "VARX" for the grid
1082 
1083  KVDetectorSignal* ds = fGraphCoords[g].fVarX;
1084  if (ds) return ds->GetValue();
1085  return -1;
1086 }
1087 
1088 
1089 
1093 
1095 {
1096  // Return value of Y coordinate to be used with the given ID grid
1097  // This corresponds to whatever was given as parameter "VARY" for the grid
1098 
1099  KVDetectorSignal* ds = fGraphCoords[g].fVarY;
1100  if (ds) return ds->GetValue();
1101  return -1;
1102 }
1103 
1104 
1105 
1106 
1108 
1110 {
1111  AbstractMethod("GetIDMapY");
1112  return -1.;
1113 }
1114 
1115 
1116 
1117 
1121 
1123 {
1124  //Remove all identification grids for this ID telescope
1125  //Grids are not deleted as this is handled by gIDGridManager
1126  fIDGrids.Clear();
1127  fGraphCoords.clear();
1128 }
1129 
1130 
1131 
1132 
1151 
1153 {
1154  //Static function which will create an instance of the KVIDTelescope-derived class
1155  //corresponding to 'name'
1156  //These are defined as 'Plugin' objects in the file $KVROOT/KVFiles/.kvrootrc :
1157  //~~~~~~~
1158  // # The KVMultiDetArray::GetIDTelescopes(KVDetector*de, KVDetector*e) method uses these plugins to
1159  // # create KVIDTelescope instances adapted to the specific array geometry and detector types.
1160  // # For each pair of detectors we look for a plugin with one of the following names:
1161  // # [name_of_dataset].de_detector_type[de detector thickness]-e_detector_type[de detector thickness]
1162  // # Each characteristic in [] brackets may or may not be present in the name; first we test for names
1163  // # with these characteristics, then all combinations where one or other of the characteristics is not present.
1164  // # In addition, we first test all combinations which begin with [name_of_dataset].
1165  // # The first plugin found in this order will be used.
1166  // # In addition, if for one of the two detectors there is a plugin called
1167  // # [name_of_dataset].de_detector_type[de detector thickness]
1168  // # [name_of_dataset].e_detector_type[e detector thickness]
1169  // # then we add also an instance of this 1-detector identification telescope.
1170  //~~~~~~~
1171 
1172  TPluginHandler* ph;
1173  //check and load plugin library
1174  if (!(ph = LoadPlugin("KVIDTelescope", uri)))
1175  return 0;
1176 
1177  //execute constructor/macro for identification telescope
1178  KVIDTelescope* mda = (KVIDTelescope*) ph->ExecPlugin(0);
1179  if (mda) {
1180  //set label of telescope with URI used to find plugin (minus dataset name)
1181  mda->SetLabelFromURI(uri);
1182  }
1183 
1184  return mda;
1185 }
1186 
1187 
1188 
1189 
1193 
1195 {
1196  //PRIVATE METHOD
1197  //Sets label of telescope based on URI of plugin describing child class for this telescope
1198 
1199  TString _uri(uri);
1200  if (gDataSet && _uri.BeginsWith(gDataSet->GetName())) _uri.Remove(0, strlen(gDataSet->GetName()) + 1);
1201  SetLabel(_uri.Data());
1202 }
1203 
1204 
1205 
1206 
1223 
1225 {
1226  // Initialise the identification parameters (grids, etc.) of ALL identification telescopes of this
1227  // kind (label) in the multidetector array. Therefore this method need only be called once, and not
1228  // called for each telescope. The kind/label (returned by GetLabel) of the telescope corresponds
1229  // to the URI used to find the plugin class in $KVROOT/KVFiles/.kvrootrc.
1230  // By default, this method looks for the file with name given by the environment variable
1231  //
1232  // [dataset name].IdentificationParameterList.[telescope label]: [filename]
1233  //
1234  // which is assumed to contain the list of files containing the identification grids.
1235  //
1236  // If not such envionment variable is found, the method looks for another one:
1237  //
1238  // [dataset name].IdentificationParameterFile.[telescope label]: [filename]
1239  //
1240  // which is assumed to contain identification grids.
1241 
1242  TString filename = gDataSet->GetDataSetEnv(Form("IdentificationParameterList.%s", GetLabel()));
1243 
1244  if (filename != "") {
1245  ReadIdentificationParameterFiles(filename.Data(), multidet);
1246  }
1247  else {
1248  filename = gDataSet->GetDataSetEnv(Form("IdentificationParameterFile.%s", GetLabel()));
1249 
1250  if (filename == "") {
1251  Warning("SetIdentificationParameters",
1252  "No filename defined. Should be given by %s.IdentificationParameterFile.%s or %s.IdentificationParameterFile.%s",
1253  gDataSet->GetName(), GetLabel(), gDataSet->GetName(), GetLabel());
1254  return kFALSE;
1255  }
1256 
1258  }
1259  return kTRUE;
1260 }
1261 
1262 
1263 
1264 
1272 
1274 {
1275  // In the case where the identification grids are stored in several files, this method parse
1276  // the file found with the following environment variable:
1277  //
1278  // [dataset name].IdentificationParameterList.[telescope label]: [filename]
1279  //
1280  // which contains the list of files containing the identification grids.
1281 
1282  KVFileReader fr;
1284 
1285  while (fr.IsOK()) {
1286  fr.ReadLine(0);
1287 
1288  if (fr.GetCurrentLine() != "") LoadIdentificationParameters(fr.GetCurrentLine().Data(), multidet);
1289  }
1290 
1291  fr.CloseFile();
1292 }
1293 
1294 
1295 
1296 
1299 
1301 {
1302  // This method add to the gIDGridManager list the identification grids.
1303 
1304  TString path;
1305 
1306  if ((path = gDataSet->GetFullPathToDataSetFile(filename)) == "") {
1307  Error("LoadIdentificationParameters",
1308  "File %s not found. Should be in %s",
1309  filename, gDataSet->GetDataSetDir());
1310  return;
1311  }
1312  //
1313  //Read grids from file
1314  Info("LoadIdentificationParameters", "Using file %s", path.Data());
1315  multidet->ReadGridsFromAsciiFile(path);
1316 }
1317 
1318 
1319 
1320 
1332 
1334 {
1335  //Remove identification parameters from telescope in such a way that they
1336  //can subsequently be reset e.g. with a new version.
1337  //This is used by KVMultiDetArray::UpdateIdentifications.
1338  //Child classes with specific SetIdentificationParameters methods should
1339  //also redefine this method in order to remove (destroy) cleanly the objects
1340  //created in SetIdentificationParameters.
1341  //
1342  //This default method takes the list of grids associated to the telescope,
1343  //and for each one: 1) checks if it is still in the gIDGridManager's list
1344  //2) if yes, delete the grid and remove it from gIDGridManager
1345 
1346  TIter next_grid(GetListOfIDGrids());
1347  KVIDGrid* grid;
1348  while ((grid = (KVIDGrid*)next_grid())) {
1349 
1350  if (gIDGridManager->GetGrids()->FindObject(grid)) { //this only works if KVIDTelescope uses TObject:IsEqual method (i.e. compares pointers)
1351 
1352  gIDGridManager->DeleteGrid(grid);
1353 
1354  }
1355  }
1356  //clear list of grids
1357  fIDGrids.Clear();
1359 }
1360 
1361 
1362 
1363 
1382 
1384 {
1385  // The energy of each particle is calculated as follows:
1386  //
1387  // E = dE_1 + dE_2 + ... + dE_N
1388  //
1389  // dE_1, dE_2, ... = energy losses measured in each detector through which
1390  // the particle has passed (or stopped, in the case of dE_N).
1391  // These energy losses are corrected for (Z,A)-dependent effects
1392  // such as pulse-heigth defect in silicon detectors, losses in
1393  // windows of gas detectors, etc.
1394  //
1395  // Whenever possible, the energy loss for fired detectors which are uncalibrated
1396  // or not functioning is calculated. In this case the status returned by GetCalibStatus()
1397  // will be KVIDTelescope::kCalibStatus_Calculated.
1398  // If none of the detectors is calibrated, the particle's energy cannot be calculated &
1399  // the status will be KVIDTelescope::kCalibStatus_NoCalibrations.
1400  // Otherwise, the status code will be KVIDTelescope::kCalibStatus_OK.
1401 
1402  //status code
1404 
1405  UInt_t z = nuc->GetZ();
1406  //uncharged particles
1407  if (z == 0) return;
1408 
1409  KVDetector* d1 = GetDetector(1);
1410  KVDetector* d2 = (GetSize() > 1 ? GetDetector(2) : 0);
1411  Bool_t d1_cal = d1->IsCalibrated();
1412  Bool_t d2_cal = (d2 ? d2->IsCalibrated() : kFALSE);
1413 
1414  //no calibrations
1415  if (!d1_cal && !d2)
1416  return;
1417  if ((d1 && d2) && !d1_cal && !d2_cal)
1418  return;
1419 
1420  //status code
1422 
1423  UInt_t a = nuc->GetA();
1424 
1425  // particles stopped in first member of telescope
1426  if (nuc->GetStatus() == 3) {
1427  if (d1_cal) {
1428  nuc->SetEnergy(d1->GetCorrectedEnergy(nuc, -1, kFALSE)); //N.B.: transmission=kFALSE because particle stop in d1
1429  }
1430  return;
1431  }
1432 
1433  Double_t e1, e2, einc;
1434  e1 = e2 = einc = 0.0;
1435 
1436  if (!d1_cal) {//1st detector not calibrated - calculate from residual energy in 2nd detector
1437 
1438  //second detector must exist and have all acquisition parameters fired with above-pedestal value
1439  if (d2 && d2->Fired("Pall")) e2 = d2->GetCorrectedEnergy(nuc, -1, kFALSE); //N.B.: transmission=kFALSE because particle stop in d2
1440  if (e2 <= 0.0) {
1441  // zero energy loss in 2nd detector ? can't do anything...
1443  return;
1444  }
1445  //calculate & set energy loss in dE detector
1446  //N.B. using e2 for the residual energy after detector 1 means
1447  //that we are assuming the particle stops in detector 2.
1448  //if this is not true, we will underestimate the energy of the particle.
1449  e1 = d1->GetDeltaEFromERes(z, a, e2);
1450  if (e1 < 0.0) e1 = 0.0;
1451  else {
1452  d1->SetEnergyLoss(e1);
1453  d1->SetEResAfterDetector(e2);
1454  e1 = d1->GetCorrectedEnergy(nuc);
1455  //status code
1457  }
1458  }
1459  else { //1st detector is calibrated too: get corrected energy loss
1460 
1461  e1 = d1->GetCorrectedEnergy(nuc);
1462 
1463  }
1464 
1465  if (d2 && !d2_cal) {//2nd detector not calibrated - calculate from energy loss in 1st detector
1466 
1467  e1 = d1->GetCorrectedEnergy(nuc);
1468  if (e1 <= 0.0) {
1469  // zero energy loss in 1st detector ? can't do anything...
1471  return;
1472  }
1473  //calculate & set energy loss in 2nd detector
1474  e2 = d1->GetEResFromDeltaE(z, a);
1475  if (e2 < 0.0) e2 = 0.0;
1476  else {
1477  e2 = d2->GetDeltaE(z, a, e2);
1478  d2->SetEnergyLoss(e2);
1479  e2 = d2->GetCorrectedEnergy(nuc);
1480  //status code
1482  }
1483  }
1484  else if (d2) { //2nd detector is calibrated too: get corrected energy loss
1485 
1486  e2 = d2->GetCorrectedEnergy(nuc, -1, kFALSE);//N.B.: transmission=kFALSE because particle assumed to stop in d2
1487  // recalculate corrected energy in first stage using info on Eres
1488  d1->SetEResAfterDetector(e2);
1489  e1 = d1->GetCorrectedEnergy(nuc);
1490  }
1491 
1492  //incident energy of particle (before 1st member of telescope)
1493  einc = e1 + e2;
1494 
1495  Double_t coherence_tolerance = gEnv->GetValue("KVIDTelescope.CoherencyTolerance", 1.05);
1496  if (coherence_tolerance < 1) coherence_tolerance += 1.00;
1497 
1498  //Now we have to work our way up the list of detectors from which the particle was
1499  //reconstructed. For each fired & calibrated detector which is only associated with
1500  //one particle in the events, we add the corrected measured energy loss
1501  //to the particle. For uncalibrated, unfired detectors and detectors through which
1502  //more than one particle has passed, we calculate the corrected energy loss and add it
1503  //to the particle.
1504  int ndets = nuc->GetNumDet();
1505  if (ndets > (int)GetSize()) { //particle passed through other detectors before this idtelesocpe
1506  //look at detectors not in this id telescope
1507  int idet = GetSize();//next detector after delta-e member of IDTelescope (stopping detector = 0)
1508  while (idet < ndets) {
1509 
1510  KVDetector* det = nuc->GetDetector(idet);
1511  if (det->Fired() && det->IsCalibrated() && det->GetNHits() == 1) {
1512  Double_t dE = det->GetEnergy();
1513  //in order to check if particle was really the only one to
1514  //hit each detector, we calculate the particle's energy loss
1515  //from its residual energy. if the measured energy loss is
1516  //significantly larger, there may be a second particle.
1517  e1 = det->GetDeltaEFromERes(z, a, einc);
1518  if (e1 < 0.0) e1 = 0.0;
1519  det->SetEResAfterDetector(einc);
1520  dE = det->GetCorrectedEnergy(nuc);
1521  einc += dE;
1522  }
1523  else {
1524  // Uncalibrated/unfired/multihit detector. Calculate energy loss.
1525  //calculate energy of particle before detector from energy after detector
1526  e1 = det->GetDeltaEFromERes(z, a, einc);
1527  if (e1 < 0.0) e1 = 0.0;
1528  if (det->GetNHits() > 1) {
1529  //Info("CalculateParticleEnergy",
1530  // "Detector %s was hit by %d particles. Calculated energy loss for particle %f MeV",
1531  // det->GetName(), det->GetNHits(), e1);
1532  if (!(det->Fired() && det->IsCalibrated())) {
1533  det->SetEnergyLoss(e1 + det->GetEnergy());// sum up calculated energy losses in uncalibrated detector
1534  }
1535  //status code
1537  }
1538  else if (!det->Fired() || !det->IsCalibrated()) {
1539  //Info("CalculateParticleEnergy",
1540  // "Detector %s uncalibrated/not fired. Calculated energy loss for particle %f MeV",
1541  // det->GetName(), e1);
1542  det->SetEnergyLoss(e1);
1543  //status code
1545  }
1546  det->SetEResAfterDetector(einc);
1547  e1 = det->GetCorrectedEnergy(nuc, e1);
1548  einc += e1;
1549  }
1550  idet++;
1551  }
1552  }
1553  //einc is now the energy of the particle before crossing the first detector
1554  nuc->SetEnergy(einc);
1555 }
1556 
1557 
1558 
1559 
1569 
1571 {
1572  // Returns name of default ID grid class for this ID telescope.
1573  // This is defined in a .kvrootrc configuration file by one of the following:
1574  // KVIDTelescope.DefaultGrid:
1575  // KVIDTelescope.DefaultGrid.[type]:
1576  // where [type] is the type of this identification telescope (which is given
1577  // by the character string returned by method GetLabel()... sorry :( )
1578  // If no default grid is defined for the specific type of this telescope,
1579  // the default defined by KVIDTelescope.DefaultGrid is used.
1580 
1581  TString specific;
1582  specific.Form("KVIDTelescope.DefaultGrid.%s", GetLabel());
1583  return gEnv->GetValue(specific.Data(), gEnv->GetValue("KVIDTelescope.DefaultGrid", "KVIDGraph"));
1584 }
1585 
1586 
1587 
1593 
1595 {
1596  //Create a dE-E grid (energy loss in detector 1 versus residual energy in detector 2) for a given list of isotopes
1597  // - AperZ : list of A for each Z. (ex: "1=1-3,2=3-4 5,3=6-8,4=7 9-12"...)
1598  // - npoints : number of points in each generated line
1599  // - xfactor : scales the detector 2 thickness to prolongate the lines
1600 
1601  if (GetSize() <= 1) return 0;
1602  if (!GetDetector(1) || !GetDetector(2)) return 0;
1603  double thickness = GetDetector(2)->GetThickness();
1604  GetDetector(2)->SetThickness(thickness * xfactor);
1605 
1606  Info("CalculateDeltaE_EGrid", "called with KVNameValueList");
1607 
1608  KVIDGrid* idgrid = newGrid(0);
1609 
1610  for (auto par : AperZ) {
1611  KVString tmp = par.GetName();
1612  int zz = tmp.Atoi();
1613  KVNumberList alist = par.GetString();
1614  for (auto aa : alist) {
1615  addLineToGrid(idgrid, zz, aa, npoints);
1616  }
1617  }
1618 
1619  GetDetector(2)->SetThickness(thickness);
1620 
1621  return idgrid;
1622 
1623 }
1624 
1625 
1626 
1634 
1635 KVIDGrid* KVIDTelescope::CalculateDeltaE_EGrid(const KVNumberList& Zrange, Int_t deltaA, Int_t npoints, Double_t lifetime, UChar_t massformula, Double_t xfactor)
1636 {
1637  //Create a dE-E grid (energy loss in detector 1 versus residual energy in detector 2) for a given list of isotopes
1638  // - Zrange : list of element for which we create lines
1639  // - deltaA : number of isotopes generated for each Z around massformula (ex: deltaA=1, Aref-1 Aref Aref+1)
1640  // - npoints : number of points in each generated line
1641  // - lifetime: remove isotopes with lifetime lower than this value
1642  // - xfactor : scales the detector 2 thickness to prolongate the lines
1643 
1644  if (GetSize() <= 1) return 0;
1645  if (!GetDetector(1) || !GetDetector(2)) return 0;
1646  double thickness = GetDetector(2)->GetThickness();
1647  GetDetector(2)->SetThickness(thickness * xfactor);
1648 
1649  Info("CalculateDeltaE_EGrid", "called with KVNumberList");
1650 
1651  KVIDGrid* idgrid = newGrid(0);
1652  KVNucleus part;
1653 
1654  Zrange.Begin();
1655  while (!Zrange.End()) {
1656  Int_t zz = Zrange.Next();
1657  part.SetZ(zz, massformula);
1658  Int_t aref = part.GetA();
1659  for (Int_t aa = aref - deltaA; aa <= aref + deltaA; aa += 1) {
1660  part.SetA(aa);
1661  if (part.IsKnown() && (part.GetLifeTime() > lifetime)) {
1662  addLineToGrid(idgrid, zz, aa, npoints);
1663 
1664  }
1665  }
1666  }
1667  GetDetector(2)->SetThickness(thickness);
1668  return idgrid;
1669 }
1670 
1671 
1672 
1678 
1680 {
1681  //Create a dE-E grid (energy loss in detector 1 versus residual energy in detector 2) for a given list of isotopes
1682  // - haa_zz : lines will be generated for A,Z filled with 1 in this histogram
1683  // - Zonly : if true, generate only one line per Z with the <A>(Z) of the histogram
1684  // - npoints : number of points in each generated line
1685 
1686  if (GetSize() <= 1) return 0;
1687  if (!GetDetector(1) || !GetDetector(2)) return 0;
1688  double thickness = GetDetector(2)->GetThickness();
1689 
1690  Info("CalculateDeltaE_EGrid", "called with TH2");
1691 
1692  KVIDGrid* idgrid = newGrid(0);
1693  KVNucleus part;
1694 
1695  for (Int_t nx = 1; nx <= haa_zz->GetNbinsX(); nx += 1) {
1696 
1697  Int_t zz = TMath::Nint(haa_zz->GetXaxis()->GetBinCenter(nx));
1698  KVNumberList nlA;
1699  Double_t sumA = 0, sum = 0;
1700  for (Int_t ny = 1; ny <= haa_zz->GetNbinsY(); ny += 1) {
1701  Double_t stat = haa_zz->GetBinContent(nx, ny);
1702  if (stat > 0) {
1703  Double_t val = haa_zz->GetYaxis()->GetBinCenter(ny);
1704  nlA.Add(TMath::Nint(val));
1705  sumA += val * stat;
1706  sum += stat;
1707  }
1708  }
1709  sumA /= sum;
1710  Int_t nA = nlA.GetNValues();
1711  if (nA == 0) {
1712  Warning("CalculateDeltaE_EGrid", "no count for Z=%d", zz);
1713  }
1714  else {
1715  if (Zonly) {
1716  nlA.Clear();
1717  nlA.Add(TMath::Nint(sumA));
1718  }
1719  else {
1720  if (nA == 1) {
1721  Int_t aref = nlA.Last();
1722  nlA.Add(aref - 1);
1723  nlA.Add(aref + 1);
1724  }
1725  }
1726  part.SetZ(zz);
1727  nlA.Begin();
1728  while (!nlA.End()) {
1729  Int_t aa = nlA.Next();
1730  part.SetA(aa);
1731  if (part.IsKnown()) {
1732  addLineToGrid(idgrid, zz, aa, npoints);
1733  }
1734  }
1735  }
1736  }
1737  return idgrid;
1738 }
1739 
1740 
1741 
1757 
1759 {
1760  // Returns the Y-axis value in the 2D identification map containing isotope (Z,A)
1761  // corresponding to either the given X-axis/Eres value or the current X-axis value given by GetIDGridXCoord()
1762  // If no mass information is available, just give Z.
1763  //
1764  // In this (default) implementation this means scanning the ID grids associated with
1765  // this telescope until we find an identification line Z or (Z,A), and then interpolating
1766  // the Y-coordinate for the current X-coordinate value.
1767  //
1768  // Status variable can take one of following values:
1769  //
1770  // KVIDTelescope::kMeanDE_OK all OK
1771  // KVIDTelescope::kMeanDE_XtooSmall X-coordinate is smaller than smallest X-coordinate of ID line
1772  // KVIDTelescope::kMeanDE_XtooLarge X-coordinate is larger than largest X-coordinate of ID line
1773  // KVIDTelescope::kMeanDE_NoIdentifie No identifier found for Z or (Z,A)
1774 
1775  status = kMeanDE_OK;
1776  // loop over grids
1777  TIter next(GetListOfIDGrids());
1778  KVIDGrid* grid;
1779  KVIDLine* idline = 0;
1780  while ((grid = (KVIDGrid*)next())) {
1781  idline = (KVIDLine*)grid->GetIdentifier(Z, A);
1782  if (idline) break;
1783  }
1784  if (!idline) {
1785  status = kMeanDE_NoIdentifier;
1786  return -1.;
1787  }
1788  Double_t x, x1, y1, x2, y2;
1789  x = (Eres < 0 ? GetIDGridXCoord(grid) : Eres);
1790  idline->GetEndPoint(x2, y2);
1791  if (x > x2) {
1792  status = kMeanDE_XtooLarge;
1793  return -1;
1794  }
1795  idline->GetStartPoint(x1, y1);
1796  if (x < x1) {
1797  status = kMeanDE_XtooSmall;
1798  return -1.;
1799  }
1800  return idline->Eval(x);
1801 }
1802 
1803 
1804 
1805 
1814 
1816 {
1817  // Return kTRUE if energy of ION is > minimum incident energy required for identification
1818  // This theoretical limit is defined here to be the incident energy for which the
1819  // dE in the first detector of a dE-E telescope is maximum.
1820  // If EINC>0 it is assumed to be the energy of the ion just before the first detector
1821  // (case where ion would have to pass other detectors before reaching this telescope).
1822  //
1823  // If this is not a dE-E telescope, we return kTRUE by default.
1824 
1825  if (GetSize() < 2) return kTRUE;
1826 
1827  KVDetector* dEdet = GetDetector(1);
1828  Double_t emin = dEdet->GetEIncOfMaxDeltaE(ION->GetZ(), ION->GetA());
1829  if (EINC > 0.0) return (EINC > emin);
1830  return (ION->GetEnergy() > emin);
1831 }
1832 
1833 
1834 
1861 
1863 {
1864  // For filtering simulations
1865  // Set the n->IsZMeasured() and n->IsAMeasured() status of the particle
1866  // In principle this depends on whether this telescope provides mass
1867  // identification or not, but this may depend on the particle's energy.
1868  // If A was not measured, it will be replaced with a value calculated
1869  // from whatever mass formula is used for the particle.
1870  //
1871  // In order to enable mass identification for certain telescopes without a dedicated
1872  // implementation (e.g. for simulating array response), put the following lines
1873  // in your .kvrootrc:
1874  //
1875  // [dataset].[telescope label].MassID: yes
1876  //
1877  // If you want to limit mass identification to certain values of Z and/or A,
1878  // add the following line:
1879  //
1880  // [dataset].[telescope label].MassID.Validity: [expression]
1881  //
1882  // where [expression] is some valid C++ boolean expression involving Z and/or A,
1883  // for example
1884  //
1885  // [dataset].[telescope label].MassID.Validity: (Z>3)&&(A<20)
1886  //
1887  // Then this expression will be tested here in order to determine particle
1888  // identification status
1889 
1890  n->SetZMeasured();
1891  if (!HasMassID()) {
1892  n->SetAMeasured(kFALSE);
1893  // beware - changing particle's mass changes its KE (momentum is conserved)
1894  double e = n->GetE();
1895  n->SetZ(n->GetZ());// use mass formula for A
1896  n->SetE(e);
1897  }
1898  else {
1899  if (fMassIDValidity) n->SetAMeasured(fMassIDValidity->Test(n)); // test expression for mass ID validity
1900  else n->SetAMeasured(); // no expression set; all nuclei are identified in mass
1901  if (!n->IsAMeasured()) {
1902  // beware - changing particle's mass changes its KE (momentum is conserved)
1903  double e = n->GetE();
1904  n->SetZ(n->GetZ()); // use mass formula for A
1905  n->SetE(e);
1906  }
1907  }
1908 }
1909 
1910 
1911 
1914 
1916 {
1917  // Open IdentificationBilan.dat file with given path
1918 
1920  fgIdentificationBilan = new TEnv(path);
1921 }
1922 
1923 
1924 
1927 
1929 {
1930  // Set status of ID Telescope for given system
1931  if (!(fgIdentificationBilan->GetValue(Form("%s.%s", system.Data(), GetName()), kTRUE))) ResetBit(kReadyForID);
1932 }
1933 
1934 
int Int_t
unsigned int UInt_t
#define d(i)
#define e(i)
bool Bool_t
unsigned char UChar_t
char Char_t
constexpr Bool_t kFALSE
double Double_t
constexpr Bool_t kTRUE
const char Option_t
R__EXTERN TEnv * gEnv
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t g
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void gc
Option_t Option_t TPoint TPoint const char y1
char name[80]
char * Form(const char *fmt,...)
void SetLabel(const Char_t *lab)
Definition: KVBase.h:195
virtual const Char_t * GetType() const
Definition: KVBase.h:177
const Char_t * GetLabel() const
Definition: KVBase.h:199
static TPluginHandler * LoadPlugin(const Char_t *base, const Char_t *uri="0")
Definition: KVBase.cpp:793
UInt_t GetNumber() const
Definition: KVBase.h:220
const Char_t * GetDataSetDir() const
Definition: KVDataSet.cpp:729
Bool_t HasCalibIdentInfos() const
Definition: KVDataSet.h:232
const Char_t * GetDataSetEnv(const Char_t *type, const Char_t *defval="") const
Definition: KVDataSet.cpp:767
TString GetFullPathToDataSetFile(const Char_t *filename)
Definition: KVDataSet.cpp:1898
Signal output from a mathematical combination of other signals.
Base class for output signal data produced by a detector.
virtual Bool_t IsValid() const
virtual Double_t GetValue(const KVNameValueList &params="") const
Base class for detector geometry description.
Definition: KVDetector.h:160
virtual Bool_t IsOK() const
Definition: KVDetector.h:682
virtual Double_t GetMaxDeltaE(Int_t Z, Int_t A)
virtual Double_t GetERes(Int_t Z, Int_t A, Double_t Einc)
virtual Double_t GetELostByParticle(KVNucleus *, TVector3 *norm=0)
Definition: KVDetector.cpp:276
virtual void SetEnergyLoss(Double_t e) const
Definition: KVDetector.h:373
virtual Double_t GetEnergy() const
Definition: KVDetector.h:349
Int_t GetNHits() const
Return the number of particles hitting this detector in an event.
Definition: KVDetector.h:436
virtual Double_t GetEIncOfMaxDeltaE(Int_t Z, Int_t A)
virtual void Clear(Option_t *opt="")
Definition: KVDetector.cpp:597
void SetThickness(Double_t thick)
virtual Bool_t Fired(Option_t *opt="any") const
Definition: KVDetector.h:451
virtual KVDetectorSignal * GetDetectorSignal(const KVString &type) const
Definition: KVDetector.h:533
Bool_t IsCalibrated() const
Definition: KVDetector.h:390
Bool_t AddDetectorSignalExpression(const KVString &type, const KVString &_expr)
virtual void SetEResAfterDetector(Double_t e)
Definition: KVDetector.h:630
virtual TList * GetAlignedDetectors(UInt_t direction=1)
virtual Double_t GetDeltaE(Int_t Z, Int_t A, Double_t Einc)
virtual Double_t GetDeltaEFromERes(Int_t Z, Int_t A, Double_t Eres)
virtual void DetectParticle(KVNucleus *, TVector3 *norm=0)
Definition: KVDetector.cpp:203
virtual void Print(Option_t *option="") const
Definition: KVDetector.cpp:364
virtual Double_t GetCorrectedEnergy(KVNucleus *, Double_t e=-1., Bool_t transmission=kTRUE)
Definition: KVDetector.cpp:811
Handle reading columns of numeric data in text files.
Definition: KVFileReader.h:120
KVString GetCurrentLine()
Definition: KVFileReader.h:319
void CloseFile()
Definition: KVFileReader.h:236
ReadStatus ReadLine(const KVString &pattern="")
Definition: KVFileReader.h:242
Bool_t IsOK()
Definition: KVFileReader.h:230
Bool_t OpenFileToRead(const KVString &filename)
Definition: KVFileReader.h:209
Group of detectors which can be treated independently of all others in array.
Definition: KVGroup.h:20
@ kForwards
Definition: KVGroup.h:33
Line in ID grid used to delimit regions where no identification is possible.
Definition: KVIDCutLine.h:23
virtual void SetName(const char *name)
This is redeclared to make it appear in context menus for KVIDCutLines.
Definition: KVIDCutLine.h:84
virtual void SetAcceptedDirection(const Char_t *dir)
Definition: KVIDCutLine.cpp:74
Base class for particle identification in a 2D map.
Definition: KVIDGraph.h:32
void Add(TString, KVIDentifier *)
Definition: KVIDGraph.cpp:838
void SetRunList(const char *runlist)
Definition: KVIDGraph.h:156
virtual void SetName(const char *name)
Definition: KVIDGraph.h:140
void AddIDTelescope(KVBase *t)
Definition: KVIDGraph.h:407
KVIDentifier * GetCut(const Char_t *name) const
Definition: KVIDGraph.h:280
virtual void Identify(Double_t, Double_t, KVIdentificationResult *) const =0
KVIDentifier * GetIdentifier(Int_t Z, Int_t A) const
Definition: KVIDGraph.cpp:310
virtual Bool_t IsIdentifiable(Double_t, Double_t, TString *rejected_by=nullptr) const
Definition: KVIDGraph.cpp:1269
const Char_t * GetName() const
Definition: KVIDGraph.cpp:1332
virtual void SetOnlyZId(Bool_t yes=kTRUE)
Definition: KVIDGraph.cpp:1496
KVList * GetGrids()
void DeleteGrid(KVIDGraph *, Bool_t update=kTRUE)
Abstract base class for 2D identification grids in e.g. (dE,E) maps.
Definition: KVIDGrid.h:74
Base class for lines/cuts used for particle identification in 2D data maps.
Definition: KVIDLine.h:143
void GetStartPoint(Double_t &x, Double_t &y) const
void GetEndPoint(Double_t &x, Double_t &y) const
Base class for all detectors or associations of detectors in array which can identify charged particl...
Definition: KVIDTelescope.h:84
KVIDGrid * newGrid(bool onlyZ)
void LoadIdentificationParameters(const Char_t *filename, const KVMultiDetArray *multidet)
This method add to the gIDGridManager list the identification grids.
virtual Double_t GetIDMapY(Option_t *opt="")
void init()
default init
KVIDGrid * CalculateDeltaE_EGrid(const KVNameValueList &AperZ, Int_t npoints=30, Double_t xfactor=1.)
void SetGroup(KVGroup *kvg)
KVList fMultiDetExpressions
used to clean up any multi-detector signal expressions generated to calculate X/Y coordinates
void SetLabelFromURI(const Char_t *uri)
@ kCalibStatus_NoCalibrations
Double_t GetIDGridYCoord(KVIDGraph *) const
virtual Bool_t Identify(KVIdentificationResult *, Double_t x=-1., Double_t y=-1.)
virtual Double_t GetIDMapX(Option_t *opt="")
static KVIDTelescope * MakeIDTelescope(const Char_t *name)
virtual Double_t GetPedestalY(Option_t *opt="")
virtual Bool_t SetIdentificationParameters(const KVMultiDetArray *)
void SetIDGrid(KVIDGraph *)
Bool_t HasMassID() const
KVDetector * GetDetector(UInt_t n) const
void ReadIdentificationParameterFiles(const Char_t *filename, const KVMultiDetArray *multidet)
virtual Bool_t CheckTheoreticalIdentificationThreshold(KVNucleus *, Double_t=0.0)
UInt_t GetGroupNumber()
void addLineToGrid(KVIDGrid *gg, int zz, int aa, int npoints)
KVGroup * GetGroup() const
Int_t fCalibStatus
temporary variable holding status code for last call to Calibrate(KVReconstructedNucleus*)
Definition: KVIDTelescope.h:98
virtual Double_t GetPedestalX(Option_t *opt="")
virtual void CalculateParticleEnergy(KVReconstructedNucleus *nuc)
virtual void AddDetector(KVDetector *d)
virtual Double_t GetMeanDEFromID(Int_t &status, Int_t Z, Int_t A=-1, Double_t Eres=-1.0)
const KVList * GetDetectors() const
KVDetectorSignal * GetSignalFromGridVar(const KVString &var, const KVString &axe, KVString &det_labels)
KVIDGraph * GetIDGrid()
virtual void Print(Option_t *opt="") const
std::unordered_map< KVIDGraph *, GraphCoords > fGraphCoords
X/Y coordinates from detector signals for ID maps.
virtual UShort_t GetIDCode()
void CheckIdentificationBilan(const TString &system)
Set status of ID Telescope for given system.
virtual void RemoveIdentificationParameters()
static void OpenIdentificationBilan(const TString &path)
Open IdentificationBilan.dat file with given path.
void SetHasMassID(Bool_t yes=kTRUE)
virtual void Initialize(void)
Double_t GetIDGridXCoord(KVIDGraph *) const
const Char_t * GetDefaultIDGridClass()
virtual void SetIdentificationStatus(KVReconstructedNucleus *)
void GetIDGridCoords(Double_t &X, Double_t &Y, KVIDGraph *grid, Double_t x=-1, Double_t y=-1)
UInt_t GetSize() const
KVUnownedList fIDGrids
identification grid(s)
Definition: KVIDTelescope.h:93
KVUnownedList fDetectors
list of detectors in telescope
Definition: KVIDTelescope.h:91
KVString GetDetectorLabelsForGridCoord(const KVString &axis) const
const KVList * GetListOfIDGrids() const
std::unique_ptr< KVParticleCondition > fMassIDValidity
may be used to limit mass identification to certain Z and/or A range
KVGroup * fGroup
group to which telescope belongs
Definition: KVIDTelescope.h:92
static TEnv * fgIdentificationBilan
Definition: KVIDTelescope.h:87
virtual void RemoveGrids()
virtual TGraph * MakeIDLine(KVNucleus *nuc, Double_t Emin, Double_t Emax, Double_t Estep=0.0)
Base class for identification ridge lines corresponding to different nuclear species.
Definition: KVIDZALine.h:33
Full result of one attempted particle identification.
Bool_t IDattempted
=kTRUE if identification was attempted
Bool_t IDOK
general quality of identification, =kTRUE if acceptable identification made
void SetGridName(const Char_t *n)
void Clear(Option_t *opt="")
Reset to initial values.
TString Rejecting_Cut
name of cut in grid which rejected particle for identification
Int_t IDquality
specific quality code returned by identification procedure
Int_t IDcode
a general identification code for this type of identification
void SetIDType(const Char_t *t)
virtual Double_t GetThickness() const
Definition: KVMaterial.cpp:487
Double_t GetEmaxValid(Int_t Z, Int_t A)
virtual Double_t GetEResFromDeltaE(Int_t Z, Int_t A, Double_t dE=-1.0, enum SolType type=kEmax)
Base class for describing the geometry of a detector array.
Bool_t ReadGridsFromAsciiFile(const Char_t *) const
Handles lists of named parameters with different types, a list of KVNamedParameter objects.
Description of properties and kinematics of atomic nuclei.
Definition: KVNucleus.h:126
Bool_t IsKnown(int z=-1, int a=-1) const
Definition: KVNucleus.cpp:1282
Int_t GetA() const
Definition: KVNucleus.cpp:802
void SetA(Int_t a)
Definition: KVNucleus.cpp:658
void SetZ(Int_t z, Char_t mt=-1)
Definition: KVNucleus.cpp:707
Int_t GetZ() const
Return the number of proton / atomic number.
Definition: KVNucleus.cpp:773
Double_t GetLifeTime(Int_t z=-1, Int_t a=-1) const
Definition: KVNucleus.cpp:1043
Strings used to represent a set of ranges of values.
Definition: KVNumberList.h:85
Bool_t End(void) const
Definition: KVNumberList.h:199
Int_t GetNValues() const
void Begin(void) const
void Add(Int_t)
Add value 'n' to the list.
void Clear(Option_t *="")
Empty number list, reset it to initial state.
Int_t Last() const
Returns largest number included in list.
Int_t Next(void) const
Double_t GetEnergy() const
Definition: KVParticle.h:621
void SetEnergy(Double_t e)
Definition: KVParticle.h:599
Nuclei reconstructed from data measured by a detector array .
KVDetector * GetDetector(const TString &label) const
virtual TObject * FindObjectByLabel(const Char_t *) const
virtual void Clear(Option_t *option="")
virtual TObject * At(Int_t idx) const
virtual TObject * First() const
virtual void SetCleanup(Bool_t enable=kTRUE)
virtual void Add(TObject *obj)
virtual TObject * FindObject(const char *name) const
Extension of ROOT TString class which allows backwards compatibility with ROOT v3....
Definition: KVString.h:73
void Begin(TString delim) const
Definition: KVString.cpp:565
Bool_t End() const
Definition: KVString.cpp:634
KVString Next(Bool_t strip_whitespace=kFALSE) const
Definition: KVString.cpp:695
Int_t GetNValues(TString delim) const
Definition: KVString.cpp:886
Optimised list in which named objects can only be placed once.
virtual void Add(TObject *obj)
virtual void SetLineColor(Color_t lcolor)
virtual Double_t GetBinCenter(Int_t bin) const
static TClass * GetClass(Bool_t load=kTRUE, Bool_t silent=kFALSE)
const char * GetVarX() const
const char * GetVarY() const
virtual const char * GetValue(const char *name, const char *dflt) const
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Int_t GetN() const
virtual Double_t Eval(Double_t x, TSpline *spline=nullptr, Option_t *option="") const
virtual Int_t GetNbinsY() const
TAxis * GetXaxis()
virtual Int_t GetNbinsX() const
TAxis * GetYaxis()
virtual Double_t GetBinContent(Int_t bin) const
void Reset()
const char * GetName() const override
virtual void SetName(const char *name)
void AbstractMethod(const char *method) const
void SetBit(UInt_t f)
virtual void Warning(const char *method, const char *msgfmt,...) const
virtual void Error(const char *method, const char *msgfmt,...) const
void ResetBit(UInt_t f)
virtual void Info(const char *method, const char *msgfmt,...) const
Longptr_t ExecPlugin(int nargs)
Ssiz_t Length() const
Int_t Atoi() const
const char * Data() const
void ToUpper()
Bool_t BeginsWith(const char *s, ECaseCompare cmp=kExact) const
void Form(const char *fmt,...)
TString & Remove(EStripType s, char c)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
TString & ReplaceAll(const char *s1, const char *s2)
TLine * line
Double_t y[n]
Double_t x[n]
const Int_t n
TGraphErrors * gr
Int_t Nint(T x)
Double_t Exp(Double_t x)
constexpr Double_t E()
Double_t Log(Double_t x)
Bool_t Even(Long_t a)
TArc a
ClassImp(TPyArg)