4 #ifndef __bayesian_estimator_H
5 #define __bayesian_estimator_H
8 #include "impact_parameter_distribution.h"
16 #include <KVValueRange.h>
20 #include "Math/PdfFuncMathCore.h"
40 double operator()(
double X,
double mean,
double reduced_variance)
43 return ROOT::Math::gamma_pdf(X, mean / reduced_variance, reduced_variance);
66 double operator()(
double X,
double mean,
double reduced_variance)
69 return ROOT::Math::binomial_pdf(TMath::Nint(X), 1. - reduced_variance, mean / (1. - reduced_variance));
92 double operator()(
double X,
double mean,
double reduced_variance)
95 return ROOT::Math::negative_binomial_pdf(TMath::Nint(X), 1. / reduced_variance, mean / (reduced_variance - 1.));
217 <
class FittingFunction,
class FluctuationKernel>
289 return P_X_cb(par[0], x[0]);
300 return P_X_cb(x[0], par[0]);
312 int bin =
histo->FindBin(x[0]);
313 if (bin < 1 || bin >
histo->GetNbinsX())
return 0;
353 double den =
fitted_P_X.Integral(p[0], p[1], 1.e-4);
354 if (den > 0)
return num / den;
416 Double_t centb = hh_centb->GetBinContent(hh_centb->FindBin(x[0]));
488 histo->Scale(1. / h->Integral(
"width"));
562 void DrawMeanXvsCb(
const TString& title =
"", Color_t color = -1, Option_t* opt =
"")
605 auto gr =
new TGraph;
617 Warning(
"update_fit_params",
"no histogram set with FitHisto(TH1*)");
620 TF1* fit = (TF1*)
histo->FindObject(
"P_X_fit_function");
622 Warning(
"update_fit_params",
"no fit function found in histogram");
625 theFitter.fill_params_from_array(fit->GetParameters());
644 f->SetLineColor(color);
645 f->SetMarkerColor(color);
648 return f->GetMaximum();
650 void DrawCbDistForSelection(TH1* sel, TH1* incl,
double& mean_cb,
double& sigma_cb, Option_t* opt =
"", Color_t color = kRed,
const TString& title =
"")
667 assert(sel->GetNbinsX() == incl->GetNbinsX());
671 sel_rapp.assign((std::vector<double>::size_type)incl->GetNbinsX(), 0.0);
672 int first_bin(0), last_bin(0);
673 for (
int i = 1; i <= incl->GetNbinsX(); ++i) {
674 if (incl->GetBinContent(i) > 0) {
675 sel_rapp[i - 1] = sel->GetBinContent(i) / incl->GetBinContent(i);
676 if (sel->GetBinContent(i) > 0) {
677 if (!first_bin) first_bin = i;
682 double Xmin = incl->GetBinLowEdge(first_bin);
683 double Xmax = incl->GetXaxis()->GetBinUpEdge(last_bin);
694 double cb_mean(0), cb_sqrmean(0), sum_pcb(0);
695 TGraph* f =
new TGraph;
696 for (
int i = 0; i < 500; ++i) {
697 double cb = i / 499.;
700 cb_mean += p_cb * cb;
701 cb_sqrmean += p_cb * cb * cb;
704 f->SetPoint(i, cb, p_cb);
708 cb_sqrmean /= sum_pcb;
711 sigma_cb = TMath::Sqrt(cb_sqrmean - cb_mean * cb_mean);
714 f->SetLineColor(color);
715 f->SetMarkerColor(color);
718 if (TString(opt) ==
"same") f->Draw(
"l");
741 TGraph* f =
new TGraph;
743 for (
int i = 0; i < 500; ++i) {
746 if (sig > maxS) maxS = sig;
747 f->SetPoint(i, b, sig);
749 f->SetLineColor(color);
750 f->SetMarkerColor(color);
753 if (TString(opt) ==
"same") f->Draw(
"l");
778 TGraph* f =
new TGraph;
779 for (
int i = 0; i < npts; ++i) {
782 f->SetPoint(i, b, sig);
787 void DrawBDistForSelection(TH1* sel, TH1* incl,
double& mean,
double& sigma, Option_t* opt =
"", Color_t color = kRed,
const TString& title =
"")
810 assert(sel->GetNbinsX() == incl->GetNbinsX());
812 sel_rapp.assign((std::vector<double>::size_type)incl->GetNbinsX(), 0.0);
813 int first_bin(0), last_bin(0);
814 for (
int i = 1; i <= incl->GetNbinsX(); ++i) {
815 if (incl->GetBinContent(i) > 0) {
816 sel_rapp[i - 1] = sel->GetBinContent(i) / incl->GetBinContent(i);
817 if (sel->GetBinContent(i) > 0) {
818 if (!first_bin) first_bin = i;
823 double Xmin = incl->GetBinLowEdge(first_bin);
824 double Xmax = incl->GetXaxis()->GetBinUpEdge(last_bin);
833 double bmean(0), bsqrmean(0), sigtot(0);
834 TGraph* f =
new TGraph;
835 for (
int i = 0; i < 500; ++i) {
839 bsqrmean += sig * b * b;
841 f->SetPoint(i, b, sig);
843 f->SetLineColor(color);
844 f->SetMarkerColor(color);
847 mean = bmean / sigtot;
849 sigma = TMath::Sqrt(bsqrmean - mean * mean);
850 if (TString(opt) ==
"same") f->Draw(
"l");
874 assert(sel->GetNbinsX() == incl->GetNbinsX());
876 sel_rapp.assign((std::vector<double>::size_type)incl->GetNbinsX(), 0.0);
877 int first_bin(0), last_bin(0);
878 for (
int i = 1; i <= incl->GetNbinsX(); ++i) {
879 if (incl->GetBinContent(i) > 0) {
880 sel_rapp[i - 1] = sel->GetBinContent(i) / incl->GetBinContent(i);
881 if (sel->GetBinContent(i) > 0) {
882 if (!first_bin) first_bin = i;
887 double Xmin = incl->GetBinLowEdge(first_bin);
888 double Xmax = incl->GetXaxis()->GetBinUpEdge(last_bin);
897 double bmean(0), bsqrmean(0), sigtot(0);
898 TGraph* f =
new TGraph;
899 for (
int i = 0; i < 500; ++i) {
903 bsqrmean += sig * b * b;
905 f->SetPoint(i, b, sig);
907 f->SetLineColor(color);
908 f->SetMarkerColor(color);
911 mean = bmean / sigtot;
913 sigma = TMath::Sqrt(bsqrmean - mean * mean);
914 if (TString(opt) ==
"same") f->Draw(
"l");
938 assert(sel->GetNbinsX() == incl->GetNbinsX());
940 sel_rapp.assign((std::vector<double>::size_type)incl->GetNbinsX(), 0.0);
941 int first_bin(0), last_bin(0);
942 for (
int i = 1; i <= incl->GetNbinsX(); ++i) {
943 if (incl->GetBinContent(i) > 0) {
944 sel_rapp[i - 1] = sel->GetBinContent(i) / incl->GetBinContent(i);
945 if (sel->GetBinContent(i) > 0) {
946 if (!first_bin) first_bin = i;
951 double Xmin = incl->GetBinLowEdge(first_bin);
952 double Xmax = incl->GetXaxis()->GetBinUpEdge(last_bin);
960 sigma = TMath::Sqrt(var);
985 void DrawFittedP_X(
double norm = 1.0, Option_t* opt =
"", Color_t color = kRed,
const TString& title =
"")
996 f->SetLineColor(color);
1017 auto graph =
new TGraph;
1052 if (!title.IsNull()) copy->SetTitle(title);
1053 if (color >= 0) copy->SetLineColor(color);
1063 b_range.
Min(), b_range.
Max(), X_range.
Min(), X_range.
Max(), 0);
Base class for KaliVeda framework.
Fluctuation kernel using binomial distribution for use with bayesian_estimator.
double operator()(double X, double mean, double reduced_variance)
Fluctuation kernel using negative binomial distribution for use with bayesian_estimator.
double operator()(double X, double mean, double reduced_variance)
Impact parameter distribution reconstruction from experimental data.
double P_X_cb_for_integral(double *x, double *par)
impact_parameter_distribution fIPDist
void DrawBDistForSelection(TH1 *sel, TH1 *incl, double &mean, double &sigma, Option_t *opt="", Color_t color=kRed, const TString &title="")
void DrawCbDistForSelection(TH1 *sel, TH1 *incl, double &mean_cb, double &sigma_cb, Option_t *opt="", Color_t color=kRed, const TString &title="")
void RenormaliseHisto(TH1 *h)
double mean_X_vs_b(double *x, double *par)
TF1 p_X_X_integrator_with_selection
virtual ~bayesian_estimator()
void GetMeanAndSigmaBDistForXSelection(double X1, double X2, double &mean, double &sigma)
double P_X_cb(double X, double cb)
double DrawBDistForXSelection(KVValueRange< double > Xrange, Option_t *opt="", Color_t color=kRed, const TString &title="")
TF1 Cb_dist_for_arb_X_select
void GetMeanAndSigmaBDistForSelection(TH1 *sel, TH1 *incl, double &mean, double &sigma)
TF1 & GetB_dist_for_X_select()
bayesian_estimator(Bool_t integer_variable=false)
TGraph * GraphMeanXvsb(int npts=500)
double cb_dist_for_X_selection(double *x, double *p)
void SetIPDistParams(double sigmaR, double deltab)
FluctuationKernel theKernel
void SetIPDistFromHisto(TH1 *ip_histo)
TF1 * GetFittedP_X(double norm=1.0)
double b_dist_for_arb_X_selection_from_histo(double *x, double *p)
double P_X_cb_for_TF2_obs_vs_b(double *x, double *)
double P_X_from_fit(double *x, double *par)
FittingFunction theFitter
double b_dist_for_arb_X_selection(double *x, double *p)
double DrawCbDistForXSelection(double X1, double X2, Option_t *opt="", Color_t color=kRed, const TString &title="")
void FitHisto(TH1 *h=nullptr)
bayesian_estimator(const FittingFunction &previous_fit, Bool_t integer_variable=false)
double b_dist_for_X_selection(double *x, double *p)
impact_parameter_distribution & GetIPDist()
double cb_integrated_P_X(double *x, double *p)
TF1 mean_X_vs_cb_function
std::vector< double > sel_rapp
double P_X_cb_for_X_integral(double *x, double *par)
void DrawNormalisedMeanXvsb(const TString &title, Color_t color, Option_t *opt)
void Print(Option_t *="") const
double cb_dist_for_arb_X_selection(double *x, double *p)
double mean_X_vs_cb(double *x, double *par)
TGraph * GraphBDistForXSelection(KVValueRange< double > Xrange, int npts=500)
void DrawBDistForSelectionFromIPHisto(TH1 *sel, TH1 *incl, double &mean, double &sigma, Option_t *opt="", Color_t color=kRed, const TString &title="")
double P_X_cb_for_X_integral_with_selection(double *x, double *par)
TGraph * GraphP_XForGivenB(double b, KVValueRange< double > Xrange, int npts=500)
TF2 * GetJointProbabilityDistribution(KVValueRange< double > b_range, KVValueRange< double > X_range)
void DrawMeanXvsCb(const TString &title="", Color_t color=-1, Option_t *opt="")
TF1 B_dist_for_arb_X_select
TF1 B_dist_for_arb_X_select_from_histo
void DrawFittedP_X(double norm=1.0, Option_t *opt="", Color_t color=kRed, const TString &title="")
Fluctuation kernel using gamma distribution for use with bayesian_estimator.
double operator()(double X, double mean, double reduced_variance)
Class implementing parametrizable impact parameter distributions.
Double_t GetDifferentialCrossSection(double b) const
Double_t GetDifferentialCrossSectionFromHisto(double bb)
TH1 * GetCentralityFromHisto()
const TF1 & GetCentrality()
void SetDeltaB_WithConstantCrossSection(Double_t deltab, Double_t sigmaR=0)
Range of values specified by minimum, maximum.
ValueType ValueIofN(Int_t i, Int_t n) const